
beam Documentation
Release 0.7.0

The BEAM Team

Sep 20, 2023

Contents

1 About BEAM 3
1.1 Overview . 3
1.2 MATSim Integration . 4

1.2.1 BeamMobSim . 4
1.2.2 AgentSim . 5
1.2.3 PhysSim . 5
1.2.4 R5 Router . 5
1.2.5 MATSim Events . 6

1.3 Resource Markets . 7
1.4 Dynamic Within-Day Planning . 8
1.5 Rich Modal Choice . 8
1.6 Plug-in Electric Vehicle Modeling with BEAM . 8
1.7 Contact Information . 8
1.8 Reports and Papers . 9
1.9 References . 9

2 User’s Guide 11
2.1 Getting Started . 11

2.1.1 System Requirements . 11
2.1.2 Prerequisites : . 11
2.1.3 GIT-LFS Configuration . 12
2.1.4 Installing BEAM . 12
2.1.5 Running BEAM . 13
2.1.6 Running BEAM with Intellij IDE . 13
2.1.7 Scenarios . 15
2.1.8 Inputs . 16
2.1.9 Outputs . 17
2.1.10 Model Config . 19

2.2 Experiment Manager . 19
2.3 Calibration . 21

2.3.1 Optimization-based Calibration Principles . 21
2.3.2 SigOpt Setup . 21
2.3.3 Configuration . 22
2.3.4 Execution . 23
2.3.5 Manage Experiment . 23

2.4 Timezones and GTFS . 23

i

2.5 Converting a MATSim Scenario to Run with BEAM . 24
2.5.1 Conversion Instructions . 24

3 Developer’s Guide 27
3.1 Repositories . 27
3.2 Configuration . 28
3.3 Environment Variables . 28
3.4 GIT-LFS timeout - how to proceed . 29
3.5 Keeping Production Data out of Master Branch . 29
3.6 Automated Cloud Deployment . 30

3.6.1 AWS EC2 Start . 31
3.6.2 AWS EC2 Stop . 31

3.7 Performance Monitoring . 31
3.7.1 Beam Metrics Utility (MetricsSupport) . 31
3.7.2 Beam Metrics Configuration . 32
3.7.3 Setup Docker as Metric Backend . 33

3.8 Tagging Tests for Periodic CI . 34
3.9 Instructions for forking BEAM . 35
3.10 Scala tips . 36

3.10.1 Scala Collection . 36
3.10.2 Use lazy logging . 38

4 BeamAgents 39
4.1 Person Agents . 39
4.2 Ride Hail Agents . 39
4.3 Transit Driver Agents . 39

5 Behaviors 41
5.1 Mode Choice . 41

5.1.1 Multinomial Logit Mode Choice . 42
5.1.2 Latent Class Mode Choice . 42

5.2 Parking . 42
5.3 Refueling . 43

6 Event Specifications 45
6.1 MATSim Events . 45

6.1.1 ActivityStartEvent . 45
6.1.2 ActivityEndEvent . 45
6.1.3 PersonDepartureEvent . 46
6.1.4 PersonArrivalEvent . 46
6.1.5 PersonEntersVehicleEvent . 46
6.1.6 PersonLeavesVehicleEvent . 46

6.2 BEAM Events . 46
6.2.1 ModeChoiceEvent . 46
6.2.2 PathTraversalEvent . 47

7 Model Inputs 49
7.1 Configuration file . 49

7.1.1 Config Options . 50

8 Model Outputs 55
8.1 File: /modeChoice.csv . 55
8.2 File: /referenceModeChoice.csv . 55
8.3 File: /realizedMode.csv . 56
8.4 File: /rideHailRevenue.csv . 56

ii

8.5 File: /ITERS/it.0/0.averageTravelTimes.csv . 56
8.6 File: /ITERS/it.0/0.energyUse.png.csv . 56
8.7 File: /ITERS/it.0/0.physsimLinkAverageSpeedPercentage.csv . 56
8.8 File: /ITERS/it.0/0.physsimFreeFlowSpeedDistribution.csv . 57
8.9 File: /ITERS/it.0/0.rideHailWaitingStats.csv . 57
8.10 File: /ITERS/it.0/0.rideHailIndividualWaitingTimes.csv . 57
8.11 File: /ITERS/it.0/0.rideHailSurgePriceLevel.csv . 57
8.12 File: /ITERS/it.0/0.rideHailRevenue.csv . 57
8.13 File: /ITERS/it.0/0.tazRideHailSurgePriceLevel.csv . 58
8.14 File: /ITERS/it.0/0.rideHailWaitingSingleStats.csv . 58
8.15 File: /ITERS/it.0/0.rideHailInitialLocation.csv . 58
8.16 File: /stopwatch.txt . 58
8.17 File: /scorestats.txt . 59
8.18 File: /summaryStats.txt . 59
8.19 File: /ITERS/it.0/0.countsCompare.txt . 59
8.20 File: /ITERS/it.0/0.events.csv . 60
8.21 File: /ITERS/it.0/0.legHistogram.txt . 61
8.22 File: /ITERS/it.0/0.rideHailTripDistance.csv . 61
8.23 File: /ITERS/it.0/0.tripDuration.txt . 62
8.24 File: /ITERS/it.0/0.biasErrorGraphData.txt . 62
8.25 File: /ITERS/it.0/0.biasNormalizedErrorGraphData.txt . 62

9 Protocols 63
9.1 Trip Planning . 63

9.1.1 RoutingRequests . 63
9.1.2 ChoosesMode . 64

9.2 Traveling . 66
9.2.1 Driver . 66
9.2.2 Traveler . 68

9.3 Household . 71
9.3.1 Escort . 71

9.4 RideHailing . 71
9.4.1 Inquiry . 72
9.4.2 Reserve . 73

9.5 Transit . 73
9.6 Refueling . 74
9.7 Modify Passenger Schedule Manager . 74

10 DevOps Guide 75
10.1 Git LFS . 75

10.1.1 Setup git-lfs Server . 75
10.2 Jenkins . 76

10.2.1 Setup Jenkins Server . 76
10.2.2 Setup Jenkins Slave . 82
10.2.3 Configure Jenkins Master . 84
10.2.4 Configure Jenkins Jobs . 91
10.2.5 Configure Periodic Jobs . 96
10.2.6 References . 98

10.3 Automated Cloud Deployment . 98
10.3.1 Automatic Image (AMI) Update . 98

11 Indices and tables 99

iii

iv

beam Documentation, Release 0.7.0

BEAM extends the [Multi-Agent Transportation Simulation Framework (MATSim)](http://www.matsim.org/) to en-
able powerful and scalable analysis of urban transportation systems.

Contents:

Contents 1

http://www.matsim.org/

beam Documentation, Release 0.7.0

2 Contents

CHAPTER 1

About BEAM

1.1 Overview

BEAM stands for Behavior, Energy, Autonomy, and Mobility. The model is being developed as a framework for a
series of research studies in sustainable transportation at Lawrence Berkeley National Laboratory and the UC Berkeley
Institute for Transportation Studies.

BEAM is an extension to the MATSim (Multi-Agent Transportation Simulation) model, where agents employ rein-
forcement learning across successive simulated days to maximize their personal utility through plan mutation (explo-
ration) and selecting between previously executed plans (exploitation). The BEAM model shifts some of the behavioral
emphasis in MATSim from across-day planning to within-day planning, where agents dynamically respond to the state
of the system during the mobility simulation. In BEAM, agents can plan across all major modes of travel including
driving, walking, biking, transit, and transportation network companies (TNCs).

These key features are summarized here and described in further detail below:

• MATSim Integration BEAM leverages the MATSim modeling framework[1], an open source simulation tool
with a vibrant community of global developers. MATSim is extensible (BEAM is one of those extensions) which
allows modelers to utilize a large suite of tools and plug-ins to serve their research and analytical interests.

• Resource Markets While BEAM can be used as a tool for modeling and analyzing the detailed operations of a
transportation system, it is designed primarily as an approach to modeling resource markets in the transportation
sector. The transportation system is composed of several sets of mobility resources that are in limited supply
(e.g. road capacities, vehicle seating, TNC fleet availability, refueling infrastructure). By adopting the MATSim
utility maximization approach to achieving user equilibrium for traffic modeling, BEAM is able to find the
corresponding equilibrium point across all resource markets of interest.

• Dynamic Within-Day Planning Because BEAM places a heavy emphasis on within-day planning, it is possible
to simulate modern mobility services in a manner that reflects the emerging transportation system. For example,
a virtual TNC in BEAM responds to customer inquiries by reporting the wait time for a ride, which the BEAM
agents consider in their decision on what service or mode to use.

• Rich Modal Choice BEAM’s mode choice model is structured so that agents select modal strategies (e.g. “car”
versus “walk to transit” versus “TNC”) for each tour prior to the simulation day, but resolve the outcome of these
strategies within the day (e.g. route selection, standard TNC versus pooled, etc.). BEAM currently supports a

3

beam Documentation, Release 0.7.0

simple multinomial logit choice model and a more advanced model is under development and will be fully
supported by Spring 2018.

• Transportation Network Companies TNCs are already changing the mobility landscape and as driverless
vehicles come online, the economics of these services will improve substantially. In BEAM, TNCs are modeled
as a fleet of taxis controlled by a centralized manager that responds to requests from customers and dispatches
vehicles accordingly. In 2018, BEAM will be extended to simulate the behavioral processes of TNC drivers as
well as implement control algorithms designed to optimize fleets of fully automated vehicles.

• Designed for Scale BEAM is written primarily in Scala and leverages the Akka library for currency which im-
plements the [Actor Model of Computation](https://en.wikipedia.org/wiki/Actor_model). This approach simpli-
fies the process of deploying transportation simulations at full scale and utilizing high performance computing
resources. BEAM has been designed to integrate with Amazon Web Services including a framework to auto-
matically deploy simulation runs to the cloud.

1.2 MATSim Integration

MATSim is a well established agent-based transportation simulation framework with hundreds of users and developers
worldwide. BEAM leverages much of the overall structure and conventions of MATSim, but replaces several facilities
with new software. The most important of these are the Mobility Simulation and Router.

1.2.1 BeamMobSim

When BEAM is executed, the MATSim engine manages loading of most data (population, households, vehicles, and
the network used by PhysSim) as well as executing the MobSim -> Scoring -> Replanning iterative loop. BEAM takes
over the MobSim, replacing the legacy MobSim engines (i.e. QSim) with the BeamMobSim.

The BeamMobSim is composed of two simulators, the AgentSim and the PhysSim. These simulators are related to
each other and to the router as illustrated in the following diagram:

4 Chapter 1. About BEAM

https://akka.io/
https://en.wikipedia.org/wiki/Actor_model
http://www.matsim.org/

beam Documentation, Release 0.7.0

1.2.2 AgentSim

The AgentSim is designed to execute the daily plans of the population, allowing the agents to dynamically resolve
how limited transportation resources are allocated (see Resource Markets).

All movements in the AgentSim occur via “teleportation” as discrete events. In other words, given a route and a travel
time, an agent simply schedules herself to “arrive” at the destination accordingly. When this occurs, a PathTraversal
Event is thrown – one for each vehicle movement, not necessarily each passenger movement – which is used by the
PhysSim to simulate traffic flow, resolve congestion, and update travel times in the router so that in future iterations,
agents will teleport according to travel times that are consistent with network congestion.

1.2.3 PhysSim

The PhysSim simulates traffic on the road network. The underlying simulation engine is based on the Java Discrete
Event Queue Simulator (JDEQSim) from the MATSim framework. The JDEQSim then simulates traffic flow through
the system and updated the Router with new network travel times for use in subsequent iterations.

JDEQSim was designed as a MobSim engine for MATSim, so it is capable of simulating activities and movements
through the network. In BEAM, we use JDEQSim within PhysSim as purely a vehicle movement simulator. As
PathTraversalEvents are received by the PhysSim, a set of MATSim Plans are created, with one plan for each vehicle
in the AgentSim. These plans include “Activities” but they are just dummy activities that bracket the movement of
each vehicle.

Currently, PhySim and AgentSim run serially, one after another. This is due to the fact that the PhySim is substantially
faster to run than the AgentSim, because the PhysSim does not need to do any routing calculations. As improvements
to AgentSim reduce run times, future versions of BEAM will likely allow AgentSim and PhysSim to run concurrently,
or even be run in a tightly coupled manner where each teleportation in AgentSim is replaced with a direct simulation
of the propagation of vehicles through the network by the PhysSim.

1.2.4 R5 Router

BEAM uses the R5 routing engine to accomplish multi-modal routing. Agents from BEAM make request of the router,
and the results of the routing calculation are then transformed into objects that are directly usable by the BEAM agents
to choose between alternative routes and move throughout the system.

1.2. MATSim Integration 5

https://www.researchgate.net/publication/239925133_Performance_Improvements_for_Large_Scale_Traffic_Simula-_tion_in_MATSim
https://github.com/conveyal/r5

beam Documentation, Release 0.7.0

1.2.5 MATSim Events

BEAM adopts the MATSim convention of throwing events that correspond to key moments in the agent’s day. But in
BEAM, there are two separate event managers, one for the ActorSim and another for the PhySim.

The standard events output file (e.g. 0.events.csv) comes from the AgentSim, but in the outputs directory, you will
also find an events file from the PhysSim (e.g. 0.physSimEvents.xml.gz). The events from AgentSim pertain to agents
while the events in PhysSim pertain to vehicles. This is an important distinction.

The following MATSim events are thrown within the AgentSim:

• ActivityEndEvent

• PersonDepartureEvent

• PersonEntersVehicleEvent

• PersonLeavesVehicleEvent

• PersonArrivalEvent

• ActivityStartEvent

The following MATSim events are thrown within the PhysSim:

• ActivityEndEvent - these are dummy activities that bracket every vehicle movement

• PersonDepartureEvent - should be interpreted as vehicle departure

• LinkEnterEvent

• Wait2LinkEvent / VehicleEntersTraffic

• LinkLeaveEvent

• PersonArrivalEvent - should be interpreted as vehicle arrival

• ActivityStartEvent - these are dummy activities that bracket every vehicle movement

Extensions and modules written to observe the above MATSim events can be seamlessly integrated with BEAM in
a read-only manner (i.e. for analysis, summary, visualization purposes). However, extensions that are designed to
accomplish “within-day” replanning in MATSim will not be directly compatible with BEAM. This is because BEAM
already does extensive “within-day” replanning in a manner that is substantially different from QSim.

In addition to the standard MATSim events described above, BEAM throws additional events that correspond to the
act of choosing a Mode (ModeChoiceEvent) and of vehicle movements through the network (PathTraversalEvent).

All events (both MATSim and BEAM-specific) and their field descriptions are described in further detail in Event
Specifications.

6 Chapter 1. About BEAM

beam Documentation, Release 0.7.0

1.3 Resource Markets

While BEAM can be used as a tool for modeling and analyzing the detailed operations of a transportation system, it is
designed primarily as an approach to modeling resource markets in the transportation sector.

The transportation system is composed of several sets of mobility resources that are in limited supply (e.g. road
capacities, vehicle seating, TNC fleet availability, refueling infrastructure). With the exception of road capacities, all
resources in BEAM are explicitly modeled. For example, there are a finite number of seats available on transit vehicles
and there are a finite number of TNC drivers.

As resources are utilized by travelers, they become unavailable to other travelers. This resource competition is re-
solved dynamically within the AgentSim, making it impossible for multiple agents to simultaneously utilize the same
resource.

The degree to which agents use resources is determined both by resource availability and traveler behavior. As the
supply of TNC drivers becomes limited, the wait times for hailing a ride increase, which leads to lower utility scores
in the mode choice process and therefore reduced consumption of that resource.

By adopting the MATSim utility maximization approach to achieving user equilibrium for traffic modeling, BEAM
is able to find the corresponding equilibrium point across all resource markets of interest. Each agent maximizes her
utility through the replanning process (which occurs outside the simulation day) as well as within the day through
dynamic choice processes (e.g. choosing mode based on with-in day evaluation of modal alternatives).

Ultimately, the combined outcome of running BEAM over successive iterations is a system equilibrium that balances
the trade-offs between all resources in the system.

In the figure above, the resource markets that are functioning in BEAM v0.5 are boxed in blue. Future versions of
BEAM (planned for 2018) will include the additional resources boxed in red.

1.3. Resource Markets 7

beam Documentation, Release 0.7.0

1.4 Dynamic Within-Day Planning

Because BEAM places a heavy emphasis on within-day planning, it is possible to simulate modern mobility services
in a manner that reflects the emerging transportation system.

For example, a virtual TNC in BEAM responds to customer inquiries by reporting the wait time for a ride, which the
BEAM agents consider in their decision on what service or mode to use.

1.5 Rich Modal Choice

BEAM’s mode choice model is structured so that agents select modal strategies (e.g. “car” versus “walk to transit”
versus “TNC”) for each tour prior to the simulation day, but resolve the outcome of these strategies within the day
(e.g. route selection, standard TNC versus pooled, etc.). BEAM currently supports a simple multinomial logit choice
model and a more advanced model is under development and will be fully supported by Spring 2018.

1.6 Plug-in Electric Vehicle Modeling with BEAM

In 2016, BEAM was originally developed to simulate personally-owned plug-in electric vehicles (PEVs), with an
emphasis on detailed representation of charging infrastructure and driver behavior around charging.

In 2017, BEAM underwent a major revision, designed to simulate all modes of travel and to prepare the software for
scalability and extensibility. We therefore no longer support the “PEV Only” version of BEAM, though the codebase
is still available on the BEAM Github repository under the branch pev-only. In 2018, PEVs will be re-implemented in
BEAM following the new framework. In addition, BEAM will support modeling the refueling of fleets of electrified
TNCs.

The key features of the “PEV Only” version of BEAM are summarized here and described in further detail in reports
linked below.

• Detailed Representation of Charging Infrastructure In BEAM, individual chargers are explicitly represented
in the region of interest. Chargers are organized as sites that can have multiple charging points which can have
multiple plugs of any plug type. The plug types are defined by their technical characteristics (i.e. power capacity,
price, etc.) and their compatibility with vehicles types (e.g. Tesla chargers vs. CHAdeMO vs. SAE). Physical
access to chargers is also represented explicitly, i.e., charging points can only be accessed by a limited number
of parking spaces. Chargers are modeled as queues, which can be served in an automated fashion (vehicle B
begins charging as soon as vehicle A ends) or manually by sending notifications to agents that it is their turn to
begin a charging session.

• Robust Behavioral Modeling The operational decisions made by PEV drivers are modeled using discrete
choice models, which can be parameterized based on the outcomes of stated preference surveys or reveled
preference analyses. For example, the decision of whether and where to charge is currently modeled in BEAM
as a nested logit choice that considers a variety of factors including the location, capacity, and price of all charg-
ers within a search radius in addition to the state of charge of the PEV and features of the agent’s future mobility
needs for the day. The utility functions for the model are in part based on empirical work by Wen et al.[2] who
surveyed PEV drivers and analyzed the factors that influence their charging decisions.

1.7 Contact Information

Primary Technical Contacts:

Colin Sheppard colin.sheppard@lbl.gov

8 Chapter 1. About BEAM

https://github.com/LBNL-UCB-STI/beam/tree/pev-only
mailto:colin.sheppard@lbl.gov

beam Documentation, Release 0.7.0

Rashid Waraich rwaraich@lbl.gov

1.8 Reports and Papers

“Modeling Plug-in Electric Vehicle Trips, Charging Demand and Infrastructure”.

1.9 References

1. Horni, A., Nagel, K. and Axhausen, K.W. (eds.) 2016 The Multi-Agent Transport Simulation MATSim. Lon-
don: Ubiquity Press. DOI: http://dx.doi.org/10.5334/baw. License: CC-BY 4.0.

2. Wen, Y., MacKenzie, D. & Keith, D. Modeling the Charging Choices of Battery Electric Vehicle Drivers Using
Stated Preference Data. TRB Proc. Pap. No 16-5618

1.8. Reports and Papers 9

mailto:rwaraich@lbl.gov
http://www.matsim.org/the-book
http://dx.doi.org/10.5334/baw

beam Documentation, Release 0.7.0

10 Chapter 1. About BEAM

CHAPTER 2

User’s Guide

2.1 Getting Started

The following guide is designed as a demonstration of using BEAM and involves running the model on a scaled
population and transportation system. This is the ideal place to familiarize yourself with the basics of configuring and
running BEAM as well as doing small scale tests and analysis.

For more advanced utilization or to contribute to the BEAM project, see the Developer’s Guide.

2.1.1 System Requirements

• At least 8GB RAM

• Windows, Mac OSX, Linux

• Java Runtime Environment or Java Development Kit 1.8

• To verify your JRE: https://www.java.com/en/download/help/version_manual.xml

• To download JRE 1.8 (AKA JRE 8): http://www.oracle.com/technetwork/java/javase/downloads/
jre8-downloads-2133155.html

• We also recommend downloading the VIA vizualization app and obtaining a free or paid license: https://simunto.
com/via/

• Git and Git-LFS

2.1.2 Prerequisites :

Install Java

BEAM requires Java 1.8 JDK / JRE to be installed. If a different version of java is already installed on your system,
please upgrade the version to 1.8. See this link for steps to check the current version of your JRE.

If java is not already installed on your system , please follow this download manual to install java on your system.

11

https://www.java.com/en/download/help/version_manual.xml
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://simunto.com/via/
https://simunto.com/via/
https://www.java.com/en/download/help/version_manual.xml
https://www.java.com/en/download/manual.jsp

beam Documentation, Release 0.7.0

Please note that BEAM is currently compatible only with Java 1.8 and is not compatible with any of the older or recent
versions.

Install Gradle

BEAM uses gradle as its build tool. If gradle is not already installed, check this gradle installation guide for steps
on how to download and install gradle. Once gradle is successfully installed , verify the installation by running the
command

gradle

2.1.3 GIT-LFS Configuration

The installation process for git-lfs client(v2.3.4, latest installer has some issue with node-git-lfs) is very simple. For
detailed documentation please consult github guide for Mac, windows and Linux.

To verify successful installation, run following command:

$ git lfs install
Git LFS initialized.

To confirm that you have installed the correct version of client run the following command:

$ git lfs env

It will print out the installed version, and please make sure it is git-lfs/2.3.4.

To update the text pointers with the actual contents of files, run the following command (if it requests credentials, use
any username and leave the password empty):

$ git lfs pull
Git LFS: (98 of 123 files) 343.22 MB / 542.18 MB

Installing git lfs on windows :

With Git LFS windows installation, it is common to have the wrong version of git-lfs installed, because in these latest
git client version on windows, git lfs comes packaged with the git client.

When installing the git client one needs to uncheck git lfs installation. If mistakenly you installed git lfs with the
git client, the following steps are needed to correct it (uninstalling git lfs and installing the required version does not
work. . .):

• Uninstall git

• Install the git client (uncheck lfs installation)

• Install git lfs version 2.3.4 separately

Another alternative to above is to get the old git-lfs.exe from the release archives and replace the executable found in

[INSTALL PATH]\mingw6\bin and [INSTALL PATH]\cmd, where the default installation path usually is C:\Program
Files\Git

2.1.4 Installing BEAM

Clone the beam repository:

git clone git@github.com:LBNL-UCB-STI/beam.git

12 Chapter 2. User’s Guide

https://gradle.org
https://gradle.org/install
https://github.com/git-lfs/git-lfs/releases/tag/v2.3.4
https://help.github.com/articles/installing-git-large-file-storage/

beam Documentation, Release 0.7.0

Change directories into that repository:

cd beam

Fetch the remote branches and tags:

git fetch

Now checkout the develop branch:

git checkout develop

Run the gradle command to compile BEAM, this will also downloaded all required dependencies automatically:

gradle classes

Now you’re ready to run BEAM!

2.1.5 Running BEAM

Inside of the respository is a folder ‘test/input’ containing several scenarios and configurations you can experiment
with.

The simplest, smallest, and fastest is the beamville scenario (described below). Try to run beamville with this com-
mand:

./gradlew :run -PappArgs="['--config', 'test/input/beamville/beam.conf']"

The BEAM application by default sets max RAM allocation to 140g (see maxRAM setting in gradle.properties). This
needs to be adjusted based on the available memory on your system.

The max allocatable RAM value can be overriden by setting the environment variable MAXRAM to the required
value.

On Ubuntu , the environment variable can be set using the below command :

export MAXRAM=10g

where 10g = 10GB

Similarly on windows it can be set using the below command :

setx MAXRAM="10g"

The outputs are written to the ‘output’ directory, should see results appear in a sub-folder called
“beamville_%DATE_TIME%”.

Optionally you can also run BEAM from your favourite IDE . Check the below section on how to configure and run
BEAM using Intellij IDEA.

2.1.6 Running BEAM with Intellij IDE

IntelliJ IDEA community edition is an open source IDE available for free. It can be downloaded from here

After successful download , run the executable and follow the installation wizard to install Intellij IDEA.

When running the IDE for the first time , it asks to import previous settings (if any) from a local path, if no previous
settings to choose , select “Do not import settings” and click Ok.

2.1. Getting Started 13

https://www.jetbrains.com/idea/download/#section=windows

beam Documentation, Release 0.7.0

Importing BEAM project into IDE

Once the IDE is successfully installed , proceed with the below steps to import BEAM into the IDE.

1. Open the IDE and agree to the privacy policy and continue

(Optional) IDEA walks you through some default configurations set up here . In case you want to skip these steps , choose “Skip and install defaults” and go to step 2

• Select a UI theme of choice and go to Next: Default Plugins

• Select only the required plugins (gradle , java are mandatory) and disable the others and go to
Next:Feature plugins

• Install scala and click “Start using Intellij IDEA”

2. In the welcome menu , select “Import Project” and provide the location of the locally cloned BEAM project

3. Inside the import project screen, select “Import project from external model” and choose “Gradle” from the
available and click Next

4. Click Finish.

The project should now be successfully imported into the IDE and a build should be initiated automatically. If no build
is triggered automatically , you can manually trigger one by going to Build > Build Project.

Installing scala plugin

If optional configuration in step 1 of above section was skipped , scala plugin will not be added automatically . To
manually enable scala plugin go to File > Settings > Plugins. Search for scala plugin and click Install.

Setting up scala SDK

Since BEAM is built with java/scala . A scala sdk module needs to be configured to run BEAM. Check the below
steps on how to add a scala module to IDEA * Go to File > Project Settings > Global Libraries * Click + and select
Scala SDK * Select the required scala SDK from the list , if no SDK found click Create. * Click “Browse” and select
the scala home path or click “Download” (choose 2.12.x version)

Running BEAM from IDE

BEAM requires some arguments to be specified during run-time like the scenario configuration. These configuration
settings can be added as a run configuration inside the IDE.

Steps to add a new configuration :

• Go to Run > Edit Configurations

• Click + and from the templates list and select “Application”

• Fill in the following values

– Main Class : beam.sim.RunBeam

– VM options : -Xmx8g

– Program Arguments : –config test/input/beamville/beam.conf (this runs beaamville scenario, changes the
folder path to run a different scenario)

– Working Directory : /home/beam/BEAM

– Environment Variables : PWD=/home/beam/BEAM

– use submodule of path : beam.beam.main

• Click Ok to save the configuration.

To add a configuration for a different scenario , follow the above steps and change the folder path to point to the
required scenario in program arguments

14 Chapter 2. User’s Guide

beam Documentation, Release 0.7.0

2.1.7 Scenarios

We have provided two scenarios for you to explore under the test/input directory.

The beamville test scenario is a toy network consisting of a 4 x 4 block gridded road network, a light rail transit agency,
a bus transit agency, and a population of ~50 agents.

The sf-light scenario is based on the City of San Francisco, including the SF Muni public transit service and a range
of sample populations from 1000 to 25,000 agents.

2.1. Getting Started 15

beam Documentation, Release 0.7.0

2.1.8 Inputs

For more detailed inputs documentation, see Model Inputs.

BEAM follows the MATSim convention for most of the inputs required to run a simulation, though some inputs files
can alternatively be provided in CSV instead of XML format. Also, the road network and transit system inputs are
based on the R5 requirements. The following is a brief overview of the minimum requirements needed to conduct a
BEAM run.

• A configuration file (e.g. beam.conf)

• The person population and corresponding attributes files (e.g. population.xml and populationAttributes.xml)

• The household population and corresponding attributes files (e.g. households.xml and householdAttributes.xml)

• The personal vehicle fleet (e.g. vehicles.csv)

• The definition of vehicle types including for personal vehicles and the public transit fleet (e.g. vehicleTypes.csv)

16 Chapter 2. User’s Guide

http://archive.matsim.org/docs
https://github.com/conveyal/r5

beam Documentation, Release 0.7.0

• A directory containing network and transit data used by R5 (e.g. r5/)

• The open street map network (e.g. r5/beamville.osm)

• GTFS archives, one for each transit agency (e.g. r5/bus.zip)

2.1.9 Outputs

At the conclusion of a BEAM run using the default beamville scenario, the output files in the should look like this
when the run is complete:

2.1. Getting Started 17

beam Documentation, Release 0.7.0

18 Chapter 2. User’s Guide

beam Documentation, Release 0.7.0

Each iteration of the run produces a sub-folder under the ITERS directory. Within these, several automatically gener-
ated outputs are written including plots of modal usage, TNC dead heading, and energy consumption by mode.

In addition, raw outputs are available in the two events file (one from the AgentSim and one from the PhysSim, see
MATSim Events for more details), titled %ITER%.events.csv and %ITER%.physSimEvents.xml.gz respectively.

2.1.10 Model Config

To get started, we will focus your attention on a few of the most commonly used and useful configuration parameters
that control beam:

Ride Hailing Params
beam.agentsim.agents.rideHail.initialization.procedural.
→˓numDriversAsFractionOfPopulation=0.05
beam.agentsim.agents.rideHail.defaultCostPerMile=1.25
beam.agentsim.agents.rideHail.defaultCostPerMinute=0.75
Scaling and Tuning Params; 1.0 results in no scaling
beam.agentsim.tuning.transitCapacity = 0.2
beam.agentsim.tuning.transitPrice = 1.0
beam.agentsim.tuning.tollPrice = 1.0
beam.agentsim.tuning.rideHailPrice = 1.0

• numDriversAsFractionOfPopulation - Defines the # of ride hailing drivers to create. Drivers begin the simulation
located at or near the homes of existing agents, uniformly distributed.

• defaultCostPerMile - One component of the 2 part price of ride hail calculation.

• defaultCostPerMinute - One component of the 2 part price of ride hail calculation.

• transitCapacity - Scale the number of seats per transit vehicle. . . actual seats are rounded to nearest whole
number. Applies uniformly to all transit vehilces.

• transitPrice - Scale the price of riding on transit. Applies uniformly to all transit trips.

• tollPrice - Scale the price to cross tolls.

• rideHailPrice - Scale the price of ride hailing. Applies uniformly to all trips and is independent of defaultCost-
PerMile and defaultCostPerMinute described above. I.e. price = (costPerMile + costPerMinute)*rideHailPrice

2.2 Experiment Manager

BEAM features a flexible experiment manager which allows users to conduct multi-factorial experiments with minimal
configuration. The tool is powered by Jinja templates (see more http://jinja.pocoo.org/docs/2.10/).

We have created two example experiments to demonstrate how to use the experiment manager. The first is a simple
2-factorial experiment that varies some parameters of scientific interest. The second involves varying parameters of
the mode choice model as one might do in a calibration exercise.

In any experiment, we seek to vary the parameters of BEAM systematically and producing results in an organized,
predicable location to facilitate post-processing. For the two factor experiment example, we only need to vary the
contents of the BEAM config file (beam.conf) in order to achieve the desired anlaysis.

Lets start from building your experiment definitions in experiment.yml (see example in test/input/beamville/example-
experiment/experiment.yml). experiment.yml is a YAML config file which consists of 3 sections: header, default-
Params, and factors.

The Header defines the basic properties of the experiment, the title, author, and a path to the configuration file (paths
should be relative to the project root):

2.2. Experiment Manager 19

http://jinja.pocoo.org/docs/2.10/

beam Documentation, Release 0.7.0

title: Example-Experiment
author: MyName
beamTemplateConfPath: test/input/beamville/beam.conf

The Default Params are used to override any parameters from the BEAM config file for the whole experiment. These
values can, in turn, be overridden by factor levels if specified. This section is mostly a convenient way to ensure certain
parameters take on specific values without modifying the BEAM config file in use.

Experiments consist of ‘factors’, which are a dimension along which you want to vary parameters. Each instance of
the factor is a level. In our example, one factor is “transitCapacity” consisting of two levels, “Low” and “High”. You
can think about factors as of main influencers (or features) of simulation model while levels are discrete values of each
factor.

Factors can be designed however you choose, including adding as many factors or levels within those factors as you
want. E.g. to create a 3 x 3 experimental design, you would set three levels per factor as in the example below:

factors:
- title: transitCapacity
levels:
- name: Low

params:
beam.agentsim.tuning.transitCapacity: 0.01

- name: Base
params:

beam.agentsim.tuning.transitCapacity: 0.05
- name: High

params:
beam.agentsim.tuning.transitCapacity: 0.1

- title: ridehailNumber
levels:
- name: Low

params:
beam.agentsim.agents.rideHail.numDriversAsFractionOfPopulation: 0.001

- name: Base
params:

beam.agentsim.agents.rideHail.numDriversAsFractionOfPopulation: 0.01
- name: High

params:
beam.agentsim.agents.rideHail.numDriversAsFractionOfPopulation: 0.1

Each level and the baseScenario defines params, or a set of key,value pairs. Those keys are either property names from
beam.conf or placeholders from any template config files (see below for an example of this). Param names across
factors and template files must be unique, otherwise they will overwrite each other.

In our second example (see directory test/input/beamville/example-calibration/), we have added a template file mod-
eChoiceParameters.xml.tpl that allows us to change the values of parameters in BEAM input file modeChoicePa-
rameters.xml. In the experiment.yml file, we have defined 3 factors with two levels each. One level contains the
property mnl_ride_hail_intercept, which appears in modeChoiceParameters.xml.tpl as {{ mnl_ride_hail_intercept }}.
This placeholder will be replaced during template processing. The same is true for all properties in the defaultParams
and under the facts. Placeholders for template files must NOT contain the dot symbol due to special behaviour of Jinja.
However it is possible to use the full names of properties from beam.conf (which do include dots) if they need to be
overridden within this experiment run.

Also note that mnl_ride_hail_intercept appears both in the level specification and in the baseScenario. When using
a template file (versus a BEAM Config file), each level can only override properties from Default Params section of
experiment.yml.

20 Chapter 2. User’s Guide

beam Documentation, Release 0.7.0

Experiment generation can be run using following command:

gradle -PmainClass=beam.experiment.ExperimentGenerator -PappArgs="['--experiments',
→˓'test/input/beamville/example-experiment/experiment.yml']" execute

It’s better to create a new sub-folder folder (e.g. ‘calibration’ or ‘experiment-1’) in your data input directory and
put both templates and the experiment.yml there. The ExperimentGenerator will create a sub-folder next to exper-
iment.yml named runs which will include all of the data needed to run the experiment along with a shell script to
execute a local run. The generator also creates an experiments.csv file next to experiment.yml with a mapping between
experimental group name, the level name and the value of the params associated with each level.

Within each run sub-folder you will find the generated BEAM config file (based on beamTemplateConfPath), any
files from the template engine (e.g. modeChoiceParameters.xml) with all placeholders properly substituted, and a
runBeam.sh executable which can be used to execute an individual simulation. The outputs of each simulation will
appear in the output subfolder next to runBeam.sh

2.3 Calibration

This section describes calibrating BEAM simulation outputs to achieve real-world targets (e.g., volumetric traffic
counts, mode splits, transit boarding/alighting, etc.). A large number of parameters affect simulation behavior in com-
plex ways such that grid-search tuning methods would be extremely time-consuming. Instead, BEAM uses SigOpt,
which uses Bayesian optimization to rapidly tune scenarios as well as analyze the sensitivity of target metrics to
parameters.

2.3.1 Optimization-based Calibration Principles

At a high level, the SigOpt service seeks to find the optimal value, 𝑝* of an objective, 𝑓0 : R𝑛 → R, which is a function
of a vector of decision variables 𝑥 ∈ R𝑛 subject to constraints, 𝑓𝑖 : R𝑛 → R, 𝑖 = 1, . . . ,𝑚.

In our calibration problem, 𝑝* represents the value of a metric representing an aggregate measure of some deviation of
simulated values from real-world values. Decision variables are hyperparameters defined in the .conf file used to con-
figure a BEAM simulation. The constraints in this problem are the bounds within which it is believed that the SigOpt
optimization algorithm should search. The calibration problem is solved by selecting values of the hyperparameters
that minimize the output of the objective function.

Operationally, for each calibration attempt, BEAM creates an Experiment using specified Parameter variables, their
Bounds‘s, and the number of workers (applicable only when using parallel calibration execution) using the SigOpt
API. The experiment is assigned a unique ID and then receives a ‘Suggestion (parameter values to simulate) from
the SigOpt API, which assigns a value for each Parameter. Once the simulation has completed, the metric (an im-
plementation of the beam.calibration.api.ObjectiveFunction interface) is evaluated, providing an Observation to the
SigOpt API. This completes one iteration of the calibration cycle. At the start of the next iteration new Suggestion is
returned by SigOpt and the simulation is re-run with the new parameter values. This process continues for the number
of iterations specified in a command-line argument.

Note: that this is a different type of iteration from the number of iterations of a run of BEAM itself.
Users may wish to run BEAM for several iterations of the co-evolutionary plan modification loop prior to
evaluating the metric.

2.3.2 SigOpt Setup

Complete the following steps in order to prepare your simulation scenarios for calibration with SigOpt:

1. Sign up for a SigOpt account (note that students and academic researchers may be able to take advantage of
educational pricing options).

2.3. Calibration 21

http://sigopt.com
http://sigopt.com/pricing
http://sigopt.com/edu

beam Documentation, Release 0.7.0

2. Log-in to the SigOpt web interface.

3. Under the API Tokens menu, retrieve the API Token and Development Token add the tokens as environmental
variables in your execution environment with the keys SIGOPT_API_TOKEN and SIGOPT_DEV_API_TOKEN.

2.3.3 Configuration

Prepare YML File

Configuring a BEAM scenario for calibration proceeds in much the same way as it does for an experiment using the
Experiment Manager. In fact, with some minor adjustments, the YAML text file used to define experiments has the
same general structure as the one used to specify tuning hyperparameters and ranges for calibration (see example file
beam/test/input/beamville/example-calibration/experiment.yml):

title: this is the name of the SigOpt experiment
beamTemplateConfPath: the config file to be used for the experiments
modeChoiceTemplate: mode choice template file
numWorkers: this defines for a remote run, how many parallel runs should be executed
→˓(number of machines to be started)
params:
---- run template env variables ---####
EXPERIMENT_MAX_RAM: 16g (might be removed in future)
S3_OUTPUT_PATH_SUFFIX: "sf-light" (might be removed in future)
DROP_OUTPUT_ONCOMPLETE: "true" (might be removed in future)
IS_PARALLEL: "false" (might be removed in future)

runName: instance name for remote run
beamBranch: branch name
beamCommit: commit hash
deployMode: "execute"
executeClass: "beam.calibration.RunCalibration"
beamBatch: "false"
shutdownWait: "15"
shutdownBehavior: "stop"
s3Backup: "true"
maxRAM: "140g"
region: "us-west-2"
instanceType: "m4.16xlarge"

The major exceptions are the following:

• Factors may have only a single numeric parameter, which may (at the moment) only take two levels (High and
Low).

These act as bounds on the values that SigOpt will try for a particular decision variable.

• The level of parallelism is controlled by a new parameter in the header called numberOfWorkers. Setting its
value

above 1 permits running calibrations in parallel in response to multiple concurrent open Suggestions.

Create Experiment

Use beam.calibration.utils.CreateExperiment to create a new SigOpt experiment. Two inputs are needed for this: a
YAML file and a benchmark.csv file (this second parameter might be removed in the near future, as not needed).

After running the script you should be able to see the newly created experiment in the SigOpt web interface and the
experiment id is also printed out in the console.

22 Chapter 2. User’s Guide

http://app.sigopt.com/login
http://app.sigopt.com/tokens/info

beam Documentation, Release 0.7.0

Set in Config

One must also select the appropriate implementation of the ObjectiveFunction interface in the .conf file pointed to in
the YAML, which implicitly defines the metric and input files. Several example implementations are provided such
as ModeChoiceObjectiveFunction. This implementation compares modes used at the output of the simulation with
benchmark values. To optimize this objective, it is necessary to have a set of comparison benchmark values, which are
placed in the same directory as other calibration files:

beam.calibration.objectiveFunction = "ModeChoiceObjectiveFunction_
→˓AbsolutErrorWithPreferrenceForModeDiversity"
beam.calibration.mode.benchmarkFileLoc=${beam.inputDirectory}"/calibration/benchmark.
→˓csv"

(Needed for scoring funtions which try to match mode share).

2.3.4 Execution

Execution of a calibration experiment requires running the beam.calibration.RunCalibration class using the following
arguments:

--experiments production/application-sfbay/calibration/experiment_counts_calibration.yml

--benchmark Location of the benchmark file (production/applicaion-
sfbay/calibration/benchmark.csv)

--num_iters Number of SigOpt iterations to be conducted (in series).

--experiment_id If an experimentID has already been defined, add it here to continue an experi-
ment or put

“None” to start a new experiment.

--run_type Can be local or remote

2.3.5 Manage Experiment

As the number of open suggestions for an experiment is limited (10 in our case), we sometimes might need to cleanup
suggestions maually using beam.calibration.utils.DeleteSuggestion script to both delete specific and all open sugges-
tions (e.g. if there was an exception during all runs and need to restart).

2.4 Timezones and GTFS

There is a subtle requirement in BEAM related to timezones that is easy to miss and cause problems.

BEAM uses the R5 router, which was designed as a stand-alone service either for doing accessibility analysis or as a
point to point trip planner. R5 was designed with public transit at the top of the developers’ minds, so they infer the
time zone of the region being modeled from the “timezone” field in the “agency.txt” file in the first GTFS data archive
that is parsed during the network building process.

Therefore, if no GTFS data is provided to R5, it cannot infer the locate timezone and it then assumes UTC.

Meanwhile, there is a parameter in beam, “beam.routing.baseDate” that is used to ensure that routing requests to R5
are send with the appropriate timestamp. This allows you to run BEAM using any sub-schedule in your GTFS archive.
I.e. if your base date is a weekday, R5 will use the weekday schedules for transit, if it’s a weekend day, then the
weekend schedules will be used.

2.4. Timezones and GTFS 23

beam Documentation, Release 0.7.0

The time zone in the baseDate parameter (e.g. for PST one might use “2016-10-17T00:00:00-07:00”) must match the
time zone in the GTFS archive(s) provided to R5.

As a default, we provide a “dummy” GTFS data archive that is literally empty of any transit schedules, but is still
a valid GTFS archive. This archive happens to have a time zone of Los Angeles. You can download a copy of this
archive here:

https://www.dropbox.com/s/2tfbhxuvmep7wf7/dummy.zip?dl=1

But in general, if you use your own GTFS data for your region, then you may need to change this baseDate parameter
to reflect the local time zone there. Look for the “timezone” field in the “agency.txt” data file in the GTFS archive.

The date specified by the baseDate parameter must fall within the schedule of all GTFS archives included in the R5 sub-
directory. See the “calendar.txt” data file in the GTFS archive and make sure your baseDate is within the “start_date”
and “end_date” fields folder across all GTFS inputs. If this is not the case, you can either change baseDate or you can
change the GTFS data, expanding the date ranges. . . the particular dates chosen are arbitrary and will have no other
impact on the simulation results.

One more word of caution. If you make changes to GTFS data, then make sure your properly zip the data back into
an archive. You do this by selecting all of the individual text files and then right-click-compress. Do not compress the
folder containing the GTFS files, if you do this, R5 will fail to read your data and will do so without any warning or
errors.

Finally, any time you make a changes to either the GTFS inputs or the OSM network inputs, then you need to delete
the file “network.dat” under the “r5” sub-directory. This will signal to the R5 library to re-build the network.

2.5 Converting a MATSim Scenario to Run with BEAM

The following MATSim input data are required to complete the conversion process:

• Matsim network file: (e.g. network.xml)

• Matsim plans (or population) file: (e.g. population.xml)

• A download of OpenStreetMap data for a region that includes your region of interest. Should be in pbf format.
For North American downloads: http://download.geofabrik.de/north-america.html

The following inputs are optional and only recommended if your MATSim scenario has a constrained vehicle stock
(i.e. not every person owns a vehicle):

• Matsim vehicle definition (e.g. vehicles.xml)

• Travel Analysis Zone shapefile for the region, (e.g. as can be downloaded from https://www.census.gov/geo/
maps-data/data/cbf/cbf_taz.html)

Finally, this conversion can only be done with a clone of the full BEAM repository. Gradle commands will not work
with releases: https://github.com/LBNL-UCB-STI/beam/releases

2.5.1 Conversion Instructions

Note that we use the MATSim Sioux Falls scenario as an example. The data for this scenario are already in the
BEAM repository under “test/input/siouxfalls”. We recommend that you follow the steps in this guide with that data
to produce a working BEAM Sioux Falls scenario and then attempt to do the process with your own data.

1. Create a folder for your scenario in project directory under test/input (e.g: test/input/siouxfalls)

2. Create a sub-directory to your scenario directory and name it “conversion-input” (exact name required)

3. Create a another sub-directory and name it “r5”.

24 Chapter 2. User’s Guide

https://www.dropbox.com/s/2tfbhxuvmep7wf7/dummy.zip?dl=1
http://download.geofabrik.de/north-america.html
https://www.census.gov/geo/maps-data/data/cbf/cbf_taz.html
https://www.census.gov/geo/maps-data/data/cbf/cbf_taz.html
https://github.com/LBNL-UCB-STI/beam/releases

beam Documentation, Release 0.7.0

4. Copy the MATSim input data to the conversion-input directory.

5. Copy the BEAM config file from test/input/beamville/beam.conf into the scenario directory and rename to your
scenario (e.g. test/input/siouxfalls/siouxfalls.conf)

6. Make the following edits to siouxfalls.conf (or your scenario name, replace Sioux Falls names below with
appropriate names from your case):

• Do a global search/replace and search for “beamville” and replace with your scenario name (e.g. “siouxfalls”).

• matsim.conversion.scenarioDirectory = “test/input/siouxfalls”

• matsim.conversion.populationFile = “Siouxfalls_population.xml” (just the file name, assumed to be under
conversion-input)

• matsim.conversion.matsimNetworkFile = “Siouxfalls_network_PT.xml” (just the file name, assumed to be un-
der conversion-input)

• matsim.conversion.generateVehicles = true (If true – common – the conversion will use the population data to
generate default vehicles, one per agent)

• matsim.conversion.vehiclesFile = “Siouxfalls_vehicles.xml” (optional, if generateVehicles is false, specify the
matsim vehicles file name, assumed to be under conversion-input)

• matsim.conversion.defaultHouseholdIncome (an integer to be used for default household incomes of all agents)

• matsim.conversion.osmFile = “south-dakota-latest.osm.pbf” (the Open Street Map source data file that should
be clipped to the scenario network, assumed to be under conversion-input)

• matsim.conversion.shapeConfig.shapeFile (file name shape file package, e.g: for shape file name tz46_d00,
there should be following files: tz46_d00.shp, tz46_d00.dbf, tz46_d00.shx)

• matsim.conversion.shapeConfig.tazIdFieldName (e.g. “TZ46_D00_I”, the field name of the TAZ ID in the
shape file)

• beam.spatial.localCRS = “epsg:26914” (the local EPSG CRS used for distance calculations, should be in units
of meters and should be the CRS used in the network, population and shape files)

• beam.routing.r5.mNetBuilder.toCRS = “epsg:26914” (same as above)

• beam.spatial.boundingBoxBuffer = 10000 (meters to pad bounding box around the MATSim network when
clipping the OSM network)

• The BEAM parameter beam.routing.baseDate has a time zone (e.g. for PST one might use “2016-10-
17T00:00:00-07:00”). This time zone must match the time zone in the GTFS data provided to the R5 router.
As a default, we provide the latest GTFS data from the City of Sioux Falls (“siouxareametro-sd-us.zip”. down-
loaded from transitland.org) with a timezone of America/Central. But in general, if you use your own GTFS
data for your region, then you may need to change this baseDate parameter to reflect the local time zone there.
Look for the “timezone” field in the “agency.txt” data file in the GTFS archive. Finally, the date specified by
the baseDate parameter must fall within the schedule of all GTFS archives included in the R5 sub-directory.
See the “calendar.txt” data file in the GTFS archive and make sure your baseDate is within the “start_date” and
“end_date” fields folder across all GTFS inputs. If this is not the case, you can either change baseDate or you
can change the GTFS data, expanding the date ranges. . . the particular dates chosen are arbitrary and will have
no other impact on the simulation results.

8. Run the conversion tool

• Open command line in beam root directory and run the following command, replace [/path/to/conf/file] with the
path to your config file: gradlew matsimConversion -PconfPath=[/path/to/conf/file]

The tool should produce the following outputs:

• householdAttributes.xml

2.5. Converting a MATSim Scenario to Run with BEAM 25

beam Documentation, Release 0.7.0

• households.xml

• population.xml

• populationAttributes.xml

• taz-centers.csv

• transitVehicles.xml

• vehicles.xml

9. Run OSMOSIS

The console output should contain a command for the osmosis tool, a command line utility that allows you manipulate
OSM data. If you don’t have osmosis installed, download and install from: https://wiki.openstreetmap.org/wiki/
Osmosis

Copy the osmosis command generated by conversion tool and run from the command line from within the BEAM
project directory:

osmosis –read-pbf file=/path/to/osm/file/south-dakota-latest.osm.pbf –bounding-box
top=43.61080226522504 left=-96.78138443934351 bottom=43.51447260628691 right=-
96.6915507011093 completeWays=yes completeRelations=yes clipIncompleteEntities=true –write-pbf
file=/path/to/dest-osm.pbf

10. Run BEAM

• Main class to execute: beam.sim.RunBeam

• VM Options: -Xmx2g (or more if a large scenario)

• Program arguments, path to beam config file from above, (e.g. –config “test/input/siouxfalls/siouxfalls.conf”)

• Environment variables: PWD=/path/to/beam/folder

26 Chapter 2. User’s Guide

https://wiki.openstreetmap.org/wiki/Osmosis
https://wiki.openstreetmap.org/wiki/Osmosis

CHAPTER 3

Developer’s Guide

3.1 Repositories

The beam repository on github is here.

The convention for merging into the master branch is that master needs to be pass all tests and at least one other active
BEAM developer needs to review your changes before merging. Please do this by creating a pull request from any new
feature branches into master. We also encourage you to create pull requests early in your development cycle which
gives other’s an opportunity to observe and/or provide feedback in real time. When you are ready for a review, invite
one or more through the pull request.

Please use the following naming convention for feature branches, “<initials-or-username>/<descriptive-feature-
branch-name>”. Adding the issue number is also helpful, e.g.:

cjrs/issue112-update-docs

An example workflow for contributing a new feature beam might look like this:

• create a new branch off of master (e.g. cjrs/issue112-update-docs)

• push and create a pull request right away

• work in cjrs/issue112-update-docs

• get it to compile, pass tests

• request reviews from pull request

• after reviews and any subsequent iterations, merge into master and close pull request

• delete feature branch unless continued work to happy imminently on same feature branch

The pev-only and related feature branches hold a previous version of BEAM (v0.1.X) which is incompatible with
master but is still used for modeling and analysis work.

27

https://github.com/LBNL-UCB-STI/beam

beam Documentation, Release 0.7.0

3.2 Configuration

We use typesafe config for our configuration parser and we use the tscfg utility for generating typesafe container class
for our config that we can browse with auto-complete while developing.

Then you can make a copy of the config template under:

src/main/resources/config-template.conf

and start customizing the configurations to your use case.

To add new parameters or change the structure of the configuration class itself, simply edit the config-template.conf
file and run the gradle task:

gradle generateConfig

This will generate a new class src/main/scala/beam/metasim/config/BeamConfig.scala which will reflect the new struc-
ture and parameters.

3.3 Environment Variables

BEAM supports using an environment variable to optionally specify a directory to write outputs. This is not required.

Depending on your operating system, the manner in which you want to run the BEAM application or gradle tasks, the
specific place where you set these variables will differ. To run from the command line, add these statements to your
.bash_profile file:

export BEAM_OUTPUT=/path/to/your/preferred/output/destination/`

To run from IntelliJ as an “Application”, edit the “Environment Variables” field in your Run Configuration to look like
this:

BEAM_OUTPUT="/path/to/your/preferred/output/destination/"

Finally, if you want to run the gradle tasks from IntelliJ in OS X, you need to configure your variables as launch tasks
by creating a plist file for each. The files should be located under ~/Library/LaunchAgents/ and look like
the following. Note that after creating the files you need to log out / log in to OS X and you can’t Launch IntelliJ
automatically on log-in because the LaunchAgents might not complete in time.

File: ~/Library/LaunchAgents/setenv.BEAM_OUTPUT.plist:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
→˓PropertyList-1.0.dtd">
<plist version="1.0">

<dict>
<key>Label</key>
<string>setenv.BEAM_OUTPUT</string>
<key>ProgramArguments</key>
<array>

<string>/bin/launchctl</string>
<string>setenv</string>
<string>BEAM_OUTPUT</string>
<string>/path/to/your/preferred/output/destination/</string>

</array>

(continues on next page)

28 Chapter 3. Developer’s Guide

https://github.com/typesafehub/config
https://github.com/carueda/tscfg

beam Documentation, Release 0.7.0

(continued from previous page)

<key>RunAtLoad</key>
<true/>
<key>ServiceIPC</key>
<false/>

</dict>
</plist>

3.4 GIT-LFS timeout - how to proceed

Sometimes it is possible to face a timeout issue when trying to push huge files. The steps below can be followed:

1. Connect to some EC2 server inside the same Amazon S3 region: us-east-2

2. Copy the file to the server using scp:

$ scp -i mykey.pem somefile.txt remote_username@machine.us-east-2.compute.
→˓amazonaws.com:/tmp

3. Clone the repository as usual (make sure git and git-lfs are properly installed)

4. Just push the files as usual

3.5 Keeping Production Data out of Master Branch

Production versus test data. Any branch beginning with “production” or “application” will contain data in the “pro-
duction/” subfolder. This data should stay in that branch and not be merged into master. To keep the data out, the
easiest practice is to simply keep merges one-way from master into the production branch and not vice versa.

However, sometimes troubleshooting / debugging / development happens on a production branch. The cleanest way
to get changes to source code or other non-production files back into master is the following.

Checkout your production branch:

git checkout production-branch

Bring branch even with master:

git merge master

Resolve conflicts if needed

Capture the files that are different now between production and master:

git diff --name-only HEAD master > diff-with-master.txt

You have created a file “diff-with-master.txt” containing a listing of every file that is different.

IMPORTANT!!!! – Edit the file diff-with-master.txt and remove all production-related data (this typically will be all
files underneath “production” sub-directory.

Checkout master:

git checkout master

Create a new branch off of master, this is where you will stage the files to then merge back into master:

3.4. GIT-LFS timeout - how to proceed 29

beam Documentation, Release 0.7.0

git checkout -b new-branch-with-changes-4ci

Do a file by file checkout of all differing files from production branch onto master:

cat diff-with-master.txt | xargs git checkout production-branch --

Note, if any of our diffs include the deletion of a file on your production branch, then you will need to remove (i.e.
with “git remove” these before you do the above “checkout” step and you should also remove them from the diff-with-
master.txt”). If you don’t do this, you will see an error message (“did not match any file(s) known to git.”) and the
checkout command will not be completed.

Finally, commit the files that were checked out of the production branch, push, and go create your pull request!

3.6 Automated Cloud Deployment

This functionality is available for core BEAM development team with Amazon Web Services access
privileges. Please contact Colin for access to capability.

To run a BEAM simulation or experiment on amazon ec2, use following command with some optional parameters:

gradle deploy -P[beamConfigs | beamExperiments]=config-or-experiment-file

The command will start an ec2 instance based on the provided configurations and run all simulations in serial. At the
end of each simulation/experiment, outputs are uploaded to a public Amazon S3 bucket. To run each each simula-
tion/experiment parallel on separate instances, set beamBatch to false. For customized runs, you can also use following
parameters that can be specified from command line:

• beamBranch: To specify the branch for simulation, current source branch will be used as default branch.

• beamCommit: The commit SHA to run simulation. use HEAD if you want to run with latest commit, default is
HEAD.

• beamConfigs: A comma , separated list of beam.conf files. It should be relative path under the project home.
You can create branch level defaults by specifying the branch name with .configs suffix like master.configs.
Branch level default will be used if beamConfigs is not present.

• beamExperiments: A comma , separated list of experiment.yml files. It should be relative path under the project
home.You can create branch level defaults same as configs by specifying the branch name with .experiments suf-
fix like master.experiments. Branch level default will be used if beamExperiments is not present. beamConfigs
has priority over this, in other words, if both are provided then beamConfigs will be used.

• beamBatch: Set to false in case you want to run as many instances as number of config/experiment files. Default
is true.

• region: Use this parameter to select the AWS region for the run, all instances would be created in specified
region. Default region is us-east-2.

• shutdownWait: As simulation ends, ec2 instance would automatically terminate. In case you want to use the
instance, please specify the wait in minutes, default wait is 30 min.

If any of the above parameter is not specified at the command line, then default values are assumed for optional
parameters. These default values are specified in gradle.properties file.

To run a batch simulation, you can specify multiple configuration files separated by commas:

gradle deploy -PbeamConfigs=test/input/beamville/beam.conf,test/input/sf-light/sf-
→˓light.conf

30 Chapter 3. Developer’s Guide

mailto:colin.sheppard@lbl.gov
https://s3.us-east-2.amazonaws.com/beam-outputs/
https://github.com/LBNL-UCB-STI/beam/blob/master/gradle.properties

beam Documentation, Release 0.7.0

Similarly for experiment batch, you can specify comma-separated experiment files:

gradle deploy -PbeamExperiments=test/input/beamville/calibration/transport-cost/
→˓experiments.yml,test/input/sf-light/calibration/transport-cost/experiments.yml

For demo and presentation material, please follow the link on google drive.

3.6.1 AWS EC2 Start

To maintain ec2 instances, there are some utility tasks that reduce operation cost tremendously. You can start already
available instances using a simple start gradle task under aws module. You can specify one or more instance ids by a
comma saturated list as instanceIds argument. Below is syntax to use the command:

cd aws
gradle start -PinstanceIds=<InstanceID1>[,<InstanceID2>]

As a result of task, instance DNS would be printed on the console.

3.6.2 AWS EC2 Stop

Just like starting instance, you can also stop already running instances using a simple stop gradle task under aws
module. You can specify one or more instance ids by a comma saturated list as instanceIds argument. Below is syntax
to use the command:

cd aws
gradle stop -PinstanceIds=<InstanceID1>[,<InstanceID2>]

3.7 Performance Monitoring

Beam uses Kamon as a performance monitoring framework. It comes with a nice API to instrument your application
code for metric recoding. Kamon also provide many different pingable recorders like Log Reporter, StatsD, InfluxDB
etc. You can configure your desired recorder with project configurations under Kamon/metrics section. When you start
the application it will measure the instrumented components and recorder would publish either to console or specified
backend where you can monitor/analyse the metrics.

3.7.1 Beam Metrics Utility (MetricsSupport)

Beam provides metric utility as part of performance monitoring framework using Kamon API. It makes developers
life very easy, all you need is to extend your component from beam.sim.metrics.MetricsSupport trait and call your
desired utility. As you extend the trait, it will add some handy entity recorder methods in your component, to measure
the application behaviour. By using MetricSupport you measure following different metricises.

• Count occurrences or number of invocation:

countOccurrence("number-of-routing-requests", Metrics.VerboseLevel)

In this example first argument of countOccurrence is the name of entity you want to record and second is
the metric level. It is the simplest utility and just counts and resets to zero upon each flush. you can use it
for counting errors or occurrences of specifics events.

• Execution time of some expression, function call or component:

3.7. Performance Monitoring 31

https://goo.gl/Db37yM
http://kamon.io

beam Documentation, Release 0.7.0

latency("time-to-calculate-route", Metrics.RegularLevel) {
calcRoute(request)

}

In this snippet, first two arguments are same as of countOccurrence. Next, it takes the actual piece
of code/expression for which you want to measure the execution time/latency. In the example above
we are measuring the execution time to calculate a router in R5RoutingWorker, we named the entity as
“request-router-time” and set metric level to Metrics.RegularLevel. When this method executes your
entity recorder record the metrics and log with provided name.

3.7.2 Beam Metrics Configuration

After instrumenting your code you need configure your desired metric level, recorder backends and other Kamon
configurations in your project configuration file (usually beam.conf). Update your metrics configurations as below:

beam.metrics.level = "verbose"

kamon {
trace {

level = simple-trace
}

metric {
#tick-interval = 5 seconds
filters {

trace.includes = ["**"]

akka-actor {
includes = ["beam-actor-system/user/router/**", "beam-actor-system/

→˓user/worker-*"]
excludes = ["beam-actor-system/system/**", "beam-actor-system/user/

→˓worker-helper"]
}

akka-dispatcher {
includes = ["beam-actor-system/akka.actor.default-dispatcher"]

}
}

}

statsd {
hostname = 127.0.0.1 # replace with your container in case local loop didn't

→˓work
port = 8125

}

influxdb {
hostname = 18.216.21.254 # specify InfluxDB server IP
port = 8089
protocol = "udp"

}

modules {
#kamon-log-reporter.auto-start = yes
#kamon-statsd.auto-start = yes
#kamon-influxdb.auto-start = yes

(continues on next page)

32 Chapter 3. Developer’s Guide

beam Documentation, Release 0.7.0

(continued from previous page)

}
}

Make sure to update the host and port for StatsD or InfluxDB (either one(or both) of them you are using) with its
relevant the server IP address in the abode config.

Other then IP address you also need to confirm few thing in your environment like.

• beam.metrics.level would not be pointing to the value off.

• kamon-statsd.auto-start = yes, under kamon.modules.

• build.gradle(Gradle build script) has kamon-statsd, kamon-influxdb or kamon-log-reporter available as depen-
dencies, based on your kamon.modules settings and desired backend/logger.

3.7.3 Setup Docker as Metric Backend

Kamon’s StatsD reporter enables beam to publish matrices to a verity of backends. Graphite as the StatsD backend
and Grafana to create beautiful dashboards build a very good monitoring ecosystem. To make environment up and
running in a few minutes, use Kamon’s provided docker image (beam dashboard need to import) from docker hub
or build using Dockerfile and supporting configuration files available in metrics directory under beam root. All you
need is to install few prerequisite like docker, docker-compose, and make. To start a container you just need to run the
following command in metrics directory (available at root of beam project):

$ make up

With the docker container following services start and exposes the listed ports:

• 80: the Grafana web interface.

• 81: the Graphite web port

• 2003: the Graphite data port

• 8125: the StatsD port.

• 8126: the StatsD administrative port.

Now your docker container is up and required components are configured, all you need to start beam simulation. As
simulation starts, kamon would load its modules and start publishing metrics to the StatsD server (running inside the
docker container).

In your browser open http://localhost:80 (or with IP you located in previous steps). Login with the default username
(admin) and password (admin), open existing beam dashboard (or create a new one).

If you get the docker image from docker hub, you need to import the beam dashboard from metrics/grafana/dashboards
directory.

• To import a dashboard open dashboard search and then hit the import button.

• From here you can upload a dashboard json file, as upload complete the import process will let you change the
name of the dashboard, pick graphite as data source.

• A new dashboard will appear in dashboard list.

Open beam dashboard (or what ever the name you specified while importing) and start monitoring different beam
module level matrices in a nice graphical interface.

To view the container log:

3.7. Performance Monitoring 33

http://kamon.io/documentation/0.6.x/kamon-statsd/overview/
http://graphite.wikidot.com/
http://grafana.org/
https://hub.docker.com/u/kamon/
http://localhost:80

beam Documentation, Release 0.7.0

$ make tail

To stop the container:

$ make down

Cloud visualization services become more popular nowadays and save much effort and energy to prepare an environ-
ment. In future we are planing to use Datadog (a cloud base monitoring and analytic platform) with beam. Kamon
Datadog integration is the easiest way to have something (nearly) production ready.

How to get Docker IP?

Docker with VirtualBox on macOS/Windows: use docker-machine IP instead of localhost. To find the docker container
IP address, first you need to list the containers to get container id using:

$ docker ps

Then use the container id to find IP address of your container. Run the following command by providing container id
in following command by replacing YOUR_CONTAINER_ID:

$ docker inspect YOUR_CONTAINER_ID

Now at the bottom, under NetworkSettings, locate IP Address of your docker container.

3.8 Tagging Tests for Periodic CI

ScalaTest allows you to define different test categories by tagging your tests. These tags categorise tests in different
sets. And later you can filter these set of tests by specifying these tags with your build tasks. Beam also provide a
custom tag Periodic to mark your tests for periodic CI runs. As you mark the test with this tag, your test would be
included automatically into execution set and become the part of next scheduled run. It also be excluded immediately
for regular gradle test task and CI. Follow the example below to tag your test with Periodic tag:

behavior of "Trajectory"
it should "interpolate coordinates" taggedAs Periodic in {

...
}

This code marks the test with com.beam.tags.Periodic tag. You can also specify multiple tags as a comma separated
parameter list in taggedAs method. Following code demonstrate the use of multiple tags:

"The agentsim" must {
...

"let everybody walk when their plan says so" taggedAs (Periodic, Slow) in {
...

}

...
}

You can find details about scheduling a continuous integration build under DevOps section Configure Periodic Jobs.

34 Chapter 3. Developer’s Guide

https://www.datadoghq.com/
http://kamon.io/documentation/kamon-datadog/0.6.6/overview/
http://kamon.io/documentation/kamon-datadog/0.6.6/overview/
http://beam.readthedocs.io/en/latest/devops.html#configure-periodic-jobs

beam Documentation, Release 0.7.0

3.9 Instructions for forking BEAM

These instructions are based on this page

1. Clone BEAM repo

git clone https://github.com/LBNL-UCB-STI/beam

cd beam

When asked for user name and password for LFS server (http://52.15.173.229:8080) enter anything but do not leave
them blank.

2. Fetch Git LFS files

git lfs fetch origin

Many tutorials on cloning Git LFS repos say one should use

git lfs fetch --all origin

However, in BEAM this represents over 15 GB data and often fails.

3. Add new origin

git remote add new-origin <URL to new repo>

4. Create internal master branch, master branch will used to track public repo

git branch master-internal
git checkout master-internal

5. Update .lfsconfig to have only the new LFS repo

[lfs] url = <URL to new LFS repo>

Note: for Bitbucket, the <URL to new LFS repo> is <URL to new repo>/info/lfs

6. Commit changes

git commit --all

7. Push to new repo

git push new-origin --all

There will be errors saying that many files are missing (LFS upload missing objects). That is OK.

Note: As of this writing, the repo has around 250 MB LFS data. However, the push fails if the LFS server sets a low
limit on LFS data. For example, it fails for Bitbucket free which sets a limit of 1 GB LFS data

8. Set master-internal as default branch in the repository’s website.

9. Clone the new repo

git clone <URL to new repo>
cd <folder of new repo>

3.9. Instructions for forking BEAM 35

https://confluence.atlassian.com/bitbucket/current-limitations-for-git-lfs-with-bitbucket-828781638.html
http://52.15.173.229:8080

beam Documentation, Release 0.7.0

Note: Cloning might take a few minutes since the repo is quite large.

If everything turned out well, the cloning process should not ask for the credentials for BEAM’s LFS server (http:
//52.15.173.229:8080).

10. Add public repo as upstream remote

git remote add upstream https://github.com/LBNL-UCB-STI/beam

11. Set master branch to track public remote and pull latest changes

git fetch upstream
git checkout -b master upstream/master
git pull

3.10 Scala tips

3.10.1 Scala Collection

Use mutable buffer instead of immutable var:

// Before
var buffer = scala.collection.immutable.Vector.empty[Int]
buffer = buffer :+ 1
buffer = buffer :+ 2

// After
val buffer = scala.collection.mutable.ArrayBuffer.empty[Int]
buffer += 1
buffer += 2

Additionally note that, for the best performance, use mutable inside of methods, but return an immutable

val mutableList = scala.collection.mutable.MutableList(1,2) mutableList += 3 mutableList.toList //returns
scala.collection.immutable.List

//or return mutableList but explicitly set the method return type to //a common, assumed im-
mutable one from scala.collection (more dangerous)

Don’t create temporary collections, use view:

val seq: Seq[Int] = Seq(1, 2, 3, 4, 5)

// Before
seq.map(x => x + 2).filter(x => x % 2 == 0).sum

// After
seq.view.map(x => x + 2).filter(x => x % 2 == 0).sum

36 Chapter 3. Developer’s Guide

http://52.15.173.229:8080
http://52.15.173.229:8080

beam Documentation, Release 0.7.0

Don’t emulate collectFirst and collect:

// collectFirst
// Get first number >= 4
val seq: Seq[Int] = Seq(1, 2, 10, 20)
val predicate: Int => Boolean = (x: Int) => { x >= 4 }

// Before
seq.filter(predicate).headOption

// After
seq.collectFirst { case num if predicate(num) => num }

// collect
// Get first char of string, if it's longer than 3
val s: Seq[String] = Seq("C#", "C++", "C", "Scala", "Haskel")
val predicate: String => Boolean = (s: String) => { s.size > 3 }

// Before
s.filter(predicate).map { s => s.head }

// After
s.collect { case curr if predicate(curr) => curr.head }

Prefer nonEmpty over size > 0:

//Before
(1 to x).size > 0

//After
(1 to x).nonEmpty

//nonEmpty shortcircuits as soon as the first element is encountered

Prefer not to use _1, _2,... for Tuple to improve readability:

// Get odd elements of sequence s
val predicate: Int => Boolean = (idx: Int) => { idx % 2 == 1 }
val s: Seq[String] = Seq("C#", "C++", "C", "Scala", "Haskel")

// Before
s.zipWithIndex.collect {

case x if predicate(x._2) => x._1 // what is _1 or _2 ??
}

// After
s.zipWithIndex.collect {

case (s, idx) if predicate(idx) => s
}

// Use destructuring bindings to extract values from tuple
val tuple = ("Hello", 5)

// Before

(continues on next page)

3.10. Scala tips 37

beam Documentation, Release 0.7.0

(continued from previous page)

val str = tuple._1
val len = tuple._2

// After
val (str, len) = tuple

Great article about Scala Collection tips and tricks, must read

3.10.2 Use lazy logging

When you log, prefer to use API which are lazy. If you use scala logging, you have it for free. When use
ActorLogging in Akka, you should not use string interpolation, but use method with replacement arguments:

// Before
log.debug(s"Hello: $name")

// After
log.debug("Hello: {}", name)

38 Chapter 3. Developer’s Guide

https://github.com/lightbend/scala-logging#scala-logging-
https://docs.scala-lang.org/overviews/core/string-interpolation.html

CHAPTER 4

BeamAgents

BEAM is composed of Actors. Some of these Actors are BeamAgents. BeamAgents inherit the Akka FSM trait which
provides a domain-specific language for programming agent actions as a finite state machine.

How are BeamAgents different from Actors?

In general, we reserve “BeamAgent” (also referred to as “Agent”) for entities in the simulation that exhibit agency. I.e.
they don’t just change state but they have some degree of control or autonomy over themselves or other Agents.

A Person or a Manager is a Agent, but a Vehicle is only a tool used by Agents, so it is not a BeamAgent in BEAM.

Also, only BeamAgents can schedule callbacks with the BeamAgentScheduler. So any entity that needs to schedule
itself (or be scheduled by other entities) to execute some process at a defined time within the simulation should be
designed as a BeamAgent.

Programming a BeamAgent involves constructing a finite state machine and the corresponding logic that responds to
Akka messages from different states and then optionally transitions between states.

4.1 Person Agents

4.2 Ride Hail Agents

4.3 Transit Driver Agents

39

beam Documentation, Release 0.7.0

40 Chapter 4. BeamAgents

CHAPTER 5

Behaviors

Person Agents in BEAM exhibit several within-day behaviors that govern their use of the transportation system.

5.1 Mode Choice

The most prominent behavior is mode choice. Mode choice can be specified either exogensously as a field in the
persons plans, or it can be selected during replanning, or it can remain unset and be selected within the day.

Within day mode choice is selected based on the attributes of the first trip of each tour. Once a mode is selected for
the tour, the person attempts to stick with that mode for the duration of the tour.

In all cases (whether mode is specified before the day or chosen within the day) person agents use WALK as a fallback
option throughout if constraints otherwise prevent their previously determined mode from being possible for any given
trip. E.g. if a person is in the middle of a RIDE_HAIL tour, but the Ride Hail Manager is unable to match a driver to
the person, then the person will walk.

In BEAM the following modes are considers:

• Walk

• Bike

• Drive (alone)

• Walk to Transit

• Drive to Transit (Park and Ride)

• Ride Hail

• Ride Hail to/from Transit

There are two mode choice models that are possible within BEAM.

41

beam Documentation, Release 0.7.0

5.1.1 Multinomial Logit Mode Choice

The first is a simple multinomial logit choice model that has the following form for modal alternative j:

V_j = ASC_j + Beta_cost * cost + Beta_time * time + Beta_xfer * num_transfers

The ASC (alternative specific constant) parameters as well as the Beta parameters can be configured in the BEAM
configuration file and default to the following values:

beam.agentsim.agents.modalBehaviors.mulitnomialLogit.params.cost = -1.0 beam.agentsim.agents.modalBehaviors.mulitnomialLogit.params.time
= -0.0047 beam.agentsim.agents.modalBehaviors.mulitnomialLogit.params.transfer = -
1.4 beam.agentsim.agents.modalBehaviors.mulitnomialLogit.params.car_intercept = 0.0
beam.agentsim.agents.modalBehaviors.mulitnomialLogit.params.walk_transit_intercept = 0.0
beam.agentsim.agents.modalBehaviors.mulitnomialLogit.params.drive_transit_intercept = 0.0
beam.agentsim.agents.modalBehaviors.mulitnomialLogit.params.ride_hail_transit_intercept =
0.0 beam.agentsim.agents.modalBehaviors.mulitnomialLogit.params.ride_hail_intercept =
0.0 beam.agentsim.agents.modalBehaviors.mulitnomialLogit.params.walk_intercept = 0.0
beam.agentsim.agents.modalBehaviors.mulitnomialLogit.params.bike_intercept = 0.0

5.1.2 Latent Class Mode Choice

5.2 Parking

In BEAM, parking is issued at the granularity of a Traffic Analysis Zone (TAZ). Upon initialization, parking alter-
natives are read in from the CSV file listed in the BEAM config parameter beam.agentsim.taz.parking. Each row
identifies the attributes of a parking alternative for a given TAZ, of which a given combination of attributes should be
unique. Parking attributes include the following:

attribute values
parkingType Workplace, Public, Residential
pricingModel FlatFee, Block
chargingType NoCharger, Level1, Level2, DCFast, UltraFast
numStalls integer
feeInCents integer
reservedFor Any, RideHailManager

BEAM agents seek parking mid-tour, from within a leg of their trip. A search is run which starts at the trip destination
and expands outward, seeking to find the closest TAZ centers with increasing search radii. Agents will pick the
closest and cheapest parking alternative with attributes which match their use case. The location can be overridden for
ride hail agents using the config parameter beam.agentsim.agents.rideHail.refuelLocationType, which may be set to
“AtRequestLocation” or “AtTAZCenter”.

The following should be considered when configuring a set of parking alternatives. The default behavior is to provide a
nearly unbounded number of parking stalls for each combination of attributes, per TAZ, for the public, and provide no
parking alternatives for ride hail agents. This behavior can be overridden manually by providing replacement values
in the parking configuration file. Parking which is reservedFor a RideHailManager should only appear as Workplace
parking. Free parking can be instantiated by setting feeInCents to zero. numStalls should be non-negative. Charging
behavior is currently implemented for ride hail agents only.

the chargingType attribute will result in the following charger power in kW:

42 Chapter 5. Behaviors

beam Documentation, Release 0.7.0

chargingType kW
NoCharger 0.0
Level1 1.5
Level2 6.7
DCFast 50.0
UltraFast 250.0

5.3 Refueling

5.3. Refueling 43

beam Documentation, Release 0.7.0

44 Chapter 5. Behaviors

CHAPTER 6

Event Specifications

For an overview of events, including compatibility with MATSim, see MATSim Events.

The following lists each field in each event with some brief descriptions and contextual information where necessary.

6.1 MATSim Events

The following MATSim events are thrown within the AgentSim:

6.1.1 ActivityStartEvent

• Time - Time of the start of the activity.

• Activity Type - String denoting the type of activity (e.g. “Home” or “Work”)

• Person - Person ID of the person agent engaged in the activity.

• Link - Link ID of the nearest link to the activity location

• Facility - Facility ID (unused in BEAM)

6.1.2 ActivityEndEvent

• Time - Time of the end of the activity.

• Activity Type - String denoting the type of activity (e.g. “Home” or “Work”)

• Person - Person ID of the person agent engaged in the activity.

• Link - Link ID of the nearest link to the activity location

• Facility - Facility ID (unused in BEAM)

45

beam Documentation, Release 0.7.0

6.1.3 PersonDepartureEvent

• Time - Time of the person departure.

• Person - Person ID of the person departing.

• Leg Mode - String denoting the trip mode of the trip to be attempted (trip mode is the overall mode of the trip,
which is different than the mode of individual sub-legs of the trip, e.g. a trip with leg mode TRANSIT might
have sub-legs of mode WALK, BUS, SUBWAY, WALK).

• Link - Link ID of the nearest link to the departure location.

6.1.4 PersonArrivalEvent

• Time - Time of the person arrival.

• Person - Person ID of the person arriving.

• Leg Mode - String denoting the trip mode of the trip completed (trip mode is the overall mode of the trip, which
is different than the mode of individual sub-legs of the trip, e.g. a trip with leg mode TRANSIT might have
sub-legs of mode WALK, BUS, SUBWAY, WALK).

• Link - Link ID of the nearest link to the arrival location.

6.1.5 PersonEntersVehicleEvent

• Time - Time of the vehicle entry.

• Person - Person ID of the person entering the vehicle.

• Vehicle - Vehicle ID of the vehicle being entered.

6.1.6 PersonLeavesVehicleEvent

• Time - Time of the vehicle exit.

• Person - Person ID of the person exiting the vehicle.

• Vehicle - Vehicle ID of the vehicle being exited.

6.2 BEAM Events

These events are specific to BEAM and are thrown within the AgentSim:

6.2.1 ModeChoiceEvent

Note that this event corresponds to the moment of choosing a mode, if mode choice is occurring dynamically within
the day. If mode choice occurs outside of the simulation day, then this event is not thrown. Also, the time of choosing
mode is not always the same as the departure time.

• Time - Time of the mode choice.

• Person - Person ID of the person making the mode choice.

• Mode - The chosen trip mode (e.g. WALK_TRANSIT or CAR)

46 Chapter 6. Event Specifications

beam Documentation, Release 0.7.0

• Expected Maximum Utility - The logsum from the utility function used to evalute modal alternatives. If the
mode choice model is not a random utility based model, then this will be left blank.

• Location - Link ID of the nearest location.

• Available Alternatives - Comma-separated list of the alternatives considered by the agent during the mode choice
process.

• Persona Vehicle Available - Boolean denoting whether this agent had a personal vehicle availalbe to them during
the mode choice process.

• Length - the length of the chosen trip in meters.

• Tour index - the index of the chosen trip within the current tour of the agent (e.g. 0 means the first trip of the
tour, 1 is the second trip, etc.)

6.2.2 PathTraversalEvent

A Path Traversal is any time a vehicle moves within the BEAM AgentSim.

• Length - Length of the movement in meters.

• Fuel - fuel consumed during the movement in Joules.

• Num Passengers - the number of passengers on board during the vehicle movement (the driver does not count
as a passenger).

• Links - Comma-separated list of link IDs indicating the path taken.

• Mode - the sub-leg mode of the traversal (e.g. BUS or CAR or SUBWAY).

• Departure Time - the time of departure.

• Arrival Time - the time of arrival.

• Vehicle - the ID of the vehilce making the movement.

• Vehicle Type - String indicating the type of vehicle.

• Start X - X coordinate of the starting location of the movement. Coordinates are output in WGS (lat/lon).

• Start Y - Y coordinate of the starting location of the movement. Coordinates are output in WGS (lat/lon).

• End X - X coordinate of the ending location of the movement. Coordinates are output in WGS (lat/lon).

• End Y - Y coordinate of the ending location of the movement. Coordinates are output in WGS (lat/lon).

• End Leg Fuel Level - Amount of fuel (in Joules) remaining in the vehicle at the end of the movement.

6.2. BEAM Events 47

beam Documentation, Release 0.7.0

48 Chapter 6. Event Specifications

CHAPTER 7

Model Inputs

7.1 Configuration file

The BEAM configuration file controls where BEAM will source input data and the value of parameters. To see an
example of the latest version of this file:

https://github.com/LBNL-UCB-STI/beam/blob/master/test/input/beamville/beam.conf

As of Fall 2018, BEAM is still under rapid development. So the configuration file will continue to evolve. Particularly,
it should be expected that new parameters will be created to contol new model features and old configuration options
may be modified, simplied, or eliminated.

Furthermore, the BEAM configuration file contains a hybrid between parameters from MATSim (see namespace
matsim in the config file). Not all of the matsim parameters are used by BEAM. Only the specific MATSim parameters
described in this document are relevant. Modifying the other parameters will have no impact. In future releases of
BEAM, the irrelevant parameters will be removed.

In order to see example configuration options for a particular release of BEAM replace master in the above URL with
the version number, e.g. for Version v0.6.2 go to this link:

https://github.com/LBNL-UCB-STI/beam/blob/v0.6.2/test/input/beamville/beam.conf

BEAM follows the MATSim convention for most of the inputs required to run a simulation, though specifying the
road network and transit system is based on the R5 requirements. Refer to these external documntation for details on
the following inputs.

• The person population and corresponding attributes files (e.g. population.xml and populationAttributes.xml)

• The household population and corresponding attributes files (e.g. households.xml and householdAttributes.xml)

• A directory containing network and transit data used by R5 (e.g. r5/)

• The open street map network (e.g. r5/beamville.osm)

• GTFS archives, one for each transit agency (e.g. r5/bus.zip)

49

https://github.com/LBNL-UCB-STI/beam/blob/master/test/input/beamville/beam.conf
https://github.com/LBNL-UCB-STI/beam/blob/v0.6.2/test/input/beamville/beam.conf
http://archive.matsim.org/docs
https://github.com/conveyal/r5

beam Documentation, Release 0.7.0

7.1.1 Config Options

The following is a list of the most commonly used configuration options in approximate order of apearance in the
beamville example config file (order need not be preserved so it is ok to rearrange options). A complete listing will be
added to this documentation soon

General parameters:

beam.agentsim.simulationName = "beamville"
beam.agentsim.numAgents = 100
beam.agentsim.thresholdForWalkingInMeters = 1000
beam.agentsim.thresholdForMakingParkingChoiceInMeters = 100
beam.agentsim.schedulerParallelismWindow = 30
beam.agentsim.timeBinSize = 3600

• simulationName: Used as a prefix when creating an output directory to store simulation results.

• numAgents: This will limit the number of PersonAgents created in the simulation agents will be . Note that the
number of agents is also limited by the total number of “person” elements in the population file specified by
matsim.modules.plans.inputPlansFile. In other words, if there are 100 people in the plans and numAgents is set
to 50, then 50 PersonAgents will be created. If numAgents is >=100, then 100 PersonAgents will be created.
Sampling to a smaller number of agents is accomplished by sampling full households until the desired number
of PersonAgents is reached. This keeps the household structure intact.

• thresholdForWalkingInMeters: Used to determine whether a PersonAgent needs to route a walking path through
the network to get to a parked vehicle. If the vehicle is closer than thresholdForWalkingInMeters in Euclidean
distance, then the walking trip is assumed to be instantaneous. Note, for performance reasons, we do not
recommend values for this threshold less than 100m.

• thresholdForMakingParkingChoiceInMeters: Similar to thresholdForWalkingInMeters, this threshold deter-
mines the point in a driving leg when the PersonAgent initiates the parking choice processes. So for 1000m, the
agent will drive until she is <=1km from the destination and then seek a parking space.

• schedulerParallelismWindow: This controls the discrete event scheduling window used by BEAM to achieve
within-day parallelism. The units of this parameter are in seconds and the larger the window, the better the
performance of the simulation, but the less chronologically accurate the results will be.

• timeBinSize: For most auto-generated output graphs and tables, this parameter will control the resolution of
time-varying outputs.

Mode choice parameters:

beam.agentsim.agents.modalBehaviors.modeChoiceClass = "ModeChoiceMultinomialLogit"
beam.agentsim.agents.modalBehaviors.defaultValueOfTime = 8.0
beam.agentsim.agents.modalBehaviors.mulitnomialLogit.params.transfer = -1.4
beam.agentsim.agents.modalBehaviors.mulitnomialLogit.params.car_intercept = 0.0
beam.agentsim.agents.modalBehaviors.mulitnomialLogit.params.walk_transit_intercept =
→˓0.0
beam.agentsim.agents.modalBehaviors.mulitnomialLogit.params.drive_transit_intercept =
→˓2.0
beam.agentsim.agents.modalBehaviors.mulitnomialLogit.params.ride_hail_transit_
→˓intercept = 0.0
beam.agentsim.agents.modalBehaviors.mulitnomialLogit.params.ride_hail_intercept = -1.0
beam.agentsim.agents.modalBehaviors.mulitnomialLogit.params.walk_intercept = -3.0
beam.agentsim.agents.modalBehaviors.mulitnomialLogit.params.bike_intercept = 0.0
beam.agentsim.agents.modalBehaviors.lccm.paramFile = ${beam.inputDirectory}"/lccm-
→˓long.csv"
#Toll params
beam.agentsim.toll.file=${beam.inputDirectory}"/toll-prices.csv"

50 Chapter 7. Model Inputs

beam Documentation, Release 0.7.0

• modeChoiceClass: Selects the choice algorithm to be used by agents to select mode when faced with a choice.
Default of ModeChoiceMultinomialLogit is recommended but other algorithms include ModeChoiceMultino-
mialLogit ModeChoiceTransitIfAvailable ModeChoiceDriveIfAvailable ModeChoiceRideHailIfAvailable Mod-
eChoiceUniformRandom ModeChoiceLCCM.

• defaultValueOfTime: This value of time is used by the ModeChoiceMultinomialLogit choice algorithm unless
the value of time is specified in the populationAttributes file.

• params.transfer: Constant utility (where 1 util = 1 dollar) of making transfers during a transit trip.

• params.car_intercept: Constant utility (where 1 util = 1 dollar) of driving.

• params.walk_transit_intercept: Constant utility (where 1 util = 1 dollar) of walking to transit.

• params.drive_transit_intercept: Constant utility (where 1 util = 1 dollar) of driving to transit.

• params.ride_hail_transit_intercept: Constant utility (where 1 util = 1 dollar) of taking ride hail to/from transit.

• params.ride_hail_intercept: Constant utility (where 1 util = 1 dollar) of taking ride hail.

• params.walk_intercept: Constant utility (where 1 util = 1 dollar) of walking.

• params.bike_intercept: Constant utility (where 1 util = 1 dollar) of biking.

• lccm.paramFile: if modeChoiceClass is set to ModeChoiceLCCM this must point to a valid file with LCCM
parameters. Otherwise, this parameter is ignored.

• toll.file: File path to a file with static road tolls. Note, this input will change in future BEAM release where
time-varying tolls will possible.

Vehicles and Population:

#BeamVehicles Params
beam.agentsim.agents.vehicles.beamFuelTypesFile = ${beam.inputDirectory}"/
→˓beamFuelTypes.csv"
beam.agentsim.agents.vehicles.beamVehicleTypesFile = ${beam.inputDirectory}"/
→˓vehicleTypes.csv"
beam.agentsim.agents.vehicles.beamVehiclesFile = ${beam.inputDirectory}"/vehicles.csv"

• useBikes: simple way to disable biking, set to true if vehicles file does not contain any data on biking.

• beamFuelTypesFile: configure fuel fuel pricing.

• beamVehicleTypesFile: configure vehicle properties including seating capacity, length, fuel type, fuel economy,
and refueling parameters.

• beamVehiclesFile: replacement to legacy MATSim vehicles.xml file. This must contain an Id and vehicle type
for every vehicle id contained in households.xml.

TAZs, Scaling, and Physsim Tuning:

#TAZ params
beam.agentsim.taz.file=${beam.inputDirectory}"/taz-centers.csv"
beam.agentsim.taz.parking = ${beam.inputDirectory}"/parking/taz-parking-default.csv"
Scaling and Tuning Params
beam.agentsim.tuning.transitCapacity = 0.1
beam.agentsim.tuning.transitPrice = 1.0
beam.agentsim.tuning.tollPrice = 1.0
beam.agentsim.tuning.rideHailPrice = 1.0
PhysSim Scaling Params
beam.physsim.flowCapacityFactor = 0.0001
beam.physsim.storageCapacityFactor = 0.0001
beam.physsim.writeMATSimNetwork = false

(continues on next page)

7.1. Configuration file 51

beam Documentation, Release 0.7.0

(continued from previous page)

beam.physsim.ptSampleSize = 1.0
beam.physsim.jdeqsim.agentSimPhysSimInterfaceDebugger.enabled = false
beam.physsim.skipPhysSim = false

• agentsim.taz.file: path to a file specifying the centroid of each TAZ. For performance BEAM approximates
TAZ boundaries based on a nearest-centroid approach. The area of each centroid (in m^2) is also necessary to
approximate average travel distances within each TAZ (used in parking choice process).

• taz.parking: path to a file specifying the parking and charging infrastructure. If any TAZ contained in the taz
file is not specified in the parking file, then ulimited free parking is assumed.

• tuning.transitCapacity: Scale the number of seats per transit vehicle. . . actual seats are rounded to nearest whole
number. Applies uniformly to all transit vehilces.

• tuning.transitPrice: Scale the price of riding on transit. Applies uniformly to all transit trips.

• tuning.tollPrice: Scale the price to cross tolls.

• tuning.rideHailPrice: Scale the price of ride hailing. Applies uniformly to all trips and is independent
of defaultCostPerMile and defaultCostPerMinute described above. I.e. price = (costPerMile + costPer-
Minute)*rideHailPrice

• physsim.flowCapacityFactor: Flow capacity parameter used by JDEQSim for traffic flow simulation.

• physsim.storageCapacityFactor: Storage capacity parameter used by JDEQSim for traffic flow simulation.

• physsim.writeMATSimNetwork: A copy of the network used by JDEQSim will be written to outputs folder
(typically only needed for debugging).

• physsim.ptSampleSize: A scaling factor used to reduce the seating capacity of all transit vehicles. This is
typically used in the context of running a partial sample of the population, it is advisable to reduce the capacity
of the transit vehicles, but not necessarily proportionately. This should be calibrated.

• agentSimPhysSimInterfaceDebugger.enabled: Enables special debugging output.

• skipPhysSim: Turns off the JDEQSim traffic flow simulation. If set to true, then network congestion will not
change from one iteration to the next. Typically this is only used for debugging issues that are unrelated to the
physsim.

Warm Mode:

##
Warm Mode
##
beam.warmStart.enabled = false
#PATH TYPE OPTIONS: PARENT_RUN, ABSOLUTE_PATH
#PARENT_RUN: can be a director or zip archive of the output directory (e.g. like what
→˓get's stored on S3). We should also be able to specify a URL to an S3 output.
#ABSOLUTE_PATH: a directory that contains required warm stats files (e.g. linkstats
→˓and eventually a plans).
beam.warmStart.pathType = "PARENT_RUN"
beam.warmStart.path = "https://s3.us-east-2.amazonaws.com/beam-outputs/run149-base__
→˓2018-06-27_20-28-26_2a2e2bd3.zip"

• warmStart.enabled: Allows you to point to the output of a previous BEAM run and the network travel times and
final plan set from that run will be loaded and used to start a new BEAM run.

• beam.warmStart.pathType: See above for descriptions.

• beam.warmStart.path: path to the outputs to load. Can we a path on the local computer or a URL in which case
outputs will be downloaded.

52 Chapter 7. Model Inputs

beam Documentation, Release 0.7.0

Ride hail management:

##
RideHail
##
Ride Hailing General Params
beam.agentsim.agents.rideHail.numDriversAsFractionOfPopulation=0.1
beam.agentsim.agents.rideHail.defaultCostPerMile=1.25
beam.agentsim.agents.rideHail.defaultCostPerMinute=0.75
beam.agentsim.agents.rideHail.vehicleTypeId="BEV"
beam.agentsim.agents.rideHail.refuelThresholdInMeters=5000.0
beam.agentsim.agents.rideHail.refuelLocationType="AtRequestLocation"
SurgePricing parameters
beam.agentsim.agents.rideHail.surgePricing.surgeLevelAdaptionStep=0.1
beam.agentsim.agents.rideHail.surgePricing.minimumSurgeLevel=0.1

priceAdjustmentStrategy(KEEP_PRICE_LEVEL_FIXED_AT_ONE | CONTINUES_DEMAND_SUPPLY_
→˓MATCHING)
beam.agentsim.agents.rideHail.surgePricing.priceAdjustmentStrategy="KEEP_PRICE_LEVEL_
→˓FIXED_AT_ONE"

beam.agentsim.agents.rideHail.rideHailManager.radiusInMeters=5000

initialLocation(HOME | UNIFORM_RANDOM | ALL_AT_CENTER | ALL_IN_CORNER)
beam.agentsim.agents.rideHail.initialLocation.name="HOME"
beam.agentsim.agents.rideHail.initialLocation.home.radiusInMeters=10000

allocationManager(DEFAULT_MANAGER | REPOSITIONING_LOW_WAITING_TIMES | EV_MANAGER)
beam.agentsim.agents.rideHail.allocationManager.name="EV_MANAGER"
beam.agentsim.agents.rideHail.allocationManager.timeoutInSeconds=300
beam.agentsim.agents.rideHail.allocationManager.randomRepositioning.
→˓repositioningShare=0.2

beam.agentsim.agents.rideHail.allocationManager.repositionLowWaitingTimes.
→˓repositionCircleRadisInMeters=3000.0
beam.agentsim.agents.rideHail.allocationManager.repositionLowWaitingTimes.
→˓minimumNumberOfIdlingVehiclesThreshholdForRepositioning=1
beam.agentsim.agents.rideHail.allocationManager.repositionLowWaitingTimes.
→˓percentageOfVehiclesToReposition=1.0
beam.agentsim.agents.rideHail.allocationManager.repositionLowWaitingTimes.
→˓timeWindowSizeInSecForDecidingAboutRepositioning=1200
beam.agentsim.agents.rideHail.allocationManager.repositionLowWaitingTimes.
→˓allowIncreasingRadiusIfDemandInRadiusLow=true
beam.agentsim.agents.rideHail.allocationManager.repositionLowWaitingTimes.
→˓minDemandPercentageInRadius=0.1
repositioningMethod(TOP_SCORES | KMEANS)
beam.agentsim.agents.rideHail.allocationManager.repositionLowWaitingTimes.
→˓repositioningMethod="TOP_SCORES"
beam.agentsim.agents.rideHail.allocationManager.repositionLowWaitingTimes.
→˓keepMaxTopNScores=5
beam.agentsim.agents.rideHail.allocationManager.repositionLowWaitingTimes.
→˓minScoreThresholdForRepositioning=0.00001
beam.agentsim.agents.rideHail.allocationManager.repositionLowWaitingTimes.
→˓distanceWeight=0.01
beam.agentsim.agents.rideHail.allocationManager.repositionLowWaitingTimes.
→˓waitingTimeWeight=4.0
beam.agentsim.agents.rideHail.allocationManager.repositionLowWaitingTimes.
→˓demandWeight=4.0

(continues on next page)

7.1. Configuration file 53

beam Documentation, Release 0.7.0

(continued from previous page)

beam.agentsim.agents.rideHail.allocationManager.repositionLowWaitingTimes.
→˓produceDebugImages=true

beam.agentsim.agents.rideHail.iterationStats.timeBinSizeInSec=3600

• numDriversAsFractionOfPopulation - Defines the # of ride hailing drivers to create, this ration is multiplied by
the parameter beam.agentsim.numAgents to determine the actual number of drivers to create. Drivers begin the
simulation located at or near the homes of existing agents, uniformly distributed.

• defaultCostPerMile - One component of the 2 part price of ride hail calculation.

• defaultCostPerMinute - One component of the 2 part price of ride hail calculation.

• vehicleTypeId: What vehicle type is used for ride hail vehicles. This is primarily relevant for when allocation-
Manager is EV_MANAGER.

• refuelThresholdInMeters: One the fuel level (state of charge for EVs) of the vehicle falls below the level corre-
sponding to this parameter, the EV_MANAGER will dispatch the vehicle to refuel. Note, do not make this value
greate than 80% of the total vehicle range to avoid complications associated with EV fast charging.

• refuelLocationType: One of AtRequestLocation or AtTAZCenter which controls whether the vehicle is assumed
to charge at the it’s present location (AtRequestLocation) or whether it will drive to a nearby charging depot
(AtTAZCenter).

• allocationManager.name: Controls whether fleet management is simple (DEFAULT_MANAGER for no repo-
sitioning, no refueling), includes repositioing (REPOSITIONING_LOW_WAITING_TIMES) or includes both
repositioning and refueling (EV_MANAGER)

• allocationManager.timeoutInSeconds: How frequently does the manager make fleet repositioning decisions.

• beam.agentsim.agents.rideHail.allocationManager.repositionLowWaitingTimes: All of these parameters control
the details of repositioning, more documentation will be posted for these soon.

54 Chapter 7. Model Inputs

CHAPTER 8

Model Outputs

8.1 File: /modeChoice.csv

Classname: ModeChosenAnalysisObject

field description
iterations iteration number
car Car chosen as travel mode
drive_transit Drive to transit chosen as travel mode
ride_hail Ride Hail chosen as travel mode
walk Walk chosen as travel mode
walk_transit Walk to transit chosen as travel mode

8.2 File: /referenceModeChoice.csv

Classname: ModeChosenAnalysisObject

field description
iterations Bike chosen as travel mode
bike iteration number
car Car chosen as travel mode
drive_transit Drive to transit chosen as travel mode
ride_hail Ride Hail chosen as travel mode
ride_hail_transit Ride Hail to transit chosen as travel mode
walk Walk chosen as travel mode
walk_transit Walk to transit chosen as travel mode

55

beam Documentation, Release 0.7.0

8.3 File: /realizedMode.csv

Classname: RealizedModeAnalysisObject

field description
car Car chosen as travel mode
drive_transit Drive to transit chosen as travel mode
other Other modes of travel chosen
ride_hail Ride Hail chosen as travel mode
walk Walk chosen as travel mode
walk_transit Walk to transit chosen as travel mode

8.4 File: /rideHailRevenue.csv

Classname: RideHailRevenueAnalysisObject

field description
iteration # iteration number
revenue Revenue generated from ride hail

8.5 File: /ITERS/it.0/0.averageTravelTimes.csv

Classname: PersonTravelTimeAnalysisObject

field description
Mode Travel mode chosen
Hour,* Average time taken to travel by the chosen mode during the given hour of the day

8.6 File: /ITERS/it.0/0.energyUse.png.csv

Classname: FuelUsageAnalysisObject

field description
Modes Mode of travel chosen by the passenger
Bin_* Energy consumed by the vehicle while travelling by the chosen mode within the given time bin

8.7 File: /ITERS/it.0/0.physsimLinkAverageSpeedPercentage.csv

Classname: PhyssimCalcLinkSpeedStatsObject

field description
Bin A given time slot within a day
Aver-
ageLinkSpeed

The average speed at which a vehicle can travel across the network during the given time bin

56 Chapter 8. Model Outputs

beam Documentation, Release 0.7.0

8.8 File: /ITERS/it.0/0.physsimFreeFlowSpeedDistribution.csv

Classname: PhyssimCalcLinkSpeedDistributionStatsObject

field description
freeSpeedInMetersPer-
Second

The possible full speed at which a vehicle can drive through the given link (in m/s)

numberOfLinks Total number of links in the network that allow vehicles to travel with speeds up to the
given free speed

linkEfficiencyInPercent-
age

Average speed efficiency recorded by the the given network link in a day

numberOfLinks Total number of links having the corresponding link efficiency

8.9 File: /ITERS/it.0/0.rideHailWaitingStats.csv

Classname: RideHailWaitingAnalysisObject

field description
Waiting Time The time spent by a passenger waiting for a ride hail
Hour Hour of the day
Count Frequencies of times spent waiting for a ride hail during the entire day

8.10 File: /ITERS/it.0/0.rideHailIndividualWaitingTimes.csv

Classname: RideHailWaitingAnalysisObject

field description
timeOfDayInSeconds Time of a day in seconds
personId Unique id of the passenger travelling by the ride hail
rideHailVehicleId Unique id of the ride hail vehicle
waitingTimeInSec-
onds

Time spent by the given passenger waiting for the arrival of the given ride hailing vehicle

8.11 File: /ITERS/it.0/0.rideHailSurgePriceLevel.csv

Classname: GraphSurgePricingObject

field description
PriceLevel Travel fare charged by the ride hail in the given hour
Hour Hour of the day

8.12 File: /ITERS/it.0/0.rideHailRevenue.csv

Classname: GraphSurgePricingObject

8.8. File: /ITERS/it.0/0.physsimFreeFlowSpeedDistribution.csv 57

beam Documentation, Release 0.7.0

field description
Revenue Revenue earned by ride hail in the given hour
Hour Hour of the day

8.13 File: /ITERS/it.0/0.tazRideHailSurgePriceLevel.csv

Classname: GraphSurgePricingObject

field description
TazId TAZ id
DataType Type of data , can be “priceLevel” or “revenue”
Value Value of the given data type , can indicate either price Level or revenue earned by the ride hail in the

given hour
Hour Hour of the day

8.14 File: /ITERS/it.0/0.rideHailWaitingSingleStats.csv

Classname: RideHailingWaitingSingleAnalysisObject

field description
WaitingTime(sec) Time spent by a passenger on waiting for a ride hail
Hour* Hour of the day

8.15 File: /ITERS/it.0/0.rideHailInitialLocation.csv

Classname: BeamMobsim

field description
rideHailAgentID Unique id of the given ride hail agent
xCoord X co-ordinate of the starting location of the ride hail
yCoord Y co-ordinate of the starting location of the ride hail

8.16 File: /stopwatch.txt

Classname: StopWatchOutput

58 Chapter 8. Model Outputs

beam Documentation, Release 0.7.0

field description
Iteration Iteration number
BEGIN iteration Begin time of the iteration
BEGIN iterationStartsListeners Time at which the iteration start event listeners started
END iterationStartsListeners Time at which the iteration start event listeners ended
BEGIN replanning Time at which the replanning event started
END replanning Time at which the replanning event ended
BEGIN beforeMobsimListeners Time at which the beforeMobsim event listeners started
BEGIN dump all plans Begin dump all plans
END dump all plans End dump all plans
END beforeMobsimListeners Time at which the beforeMobsim event listeners ended
BEGIN mobsim Time at which the mobsim run started
END mobsim Time at which the mobsim run ended
BEGIN afterMobsimListeners Time at which the afterMobsim event listeners started
END afterMobsimListeners Time at which the afterMobsim event listeners ended
BEGIN scoring Time at which the scoring event started
END scoring Time at which the scoring event ended
BEGIN iterationEndsListeners Time at which the iteration ends event listeners ended
BEGIN compare with counts Time at which compare with counts started
END compare with counts Time at which compare with counts ended
END iteration Time at which the iteration ended

8.17 File: /scorestats.txt

Classname: ScoreStatsOutput

field description
ITERATION Iteration number
avg. EXECUTED Average of the total execution time for the given iteration
avg. WORST Average of worst case time complexities for the given iteration
avg. AVG Average of average case time complexities for the given iteration
avg. BEST Average of best case time complexities for the given iteration

8.18 File: /summaryStats.txt

Classname: SummaryStatsOutput

8.19 File: /ITERS/it.0/0.countsCompare.txt

Classname: CountsCompareOutput

8.17. File: /scorestats.txt 59

beam Documentation, Release 0.7.0

field description
Link Id Iteration number
Count Time taken by the agent to travel in a crowded transit
Station Id Amount of diesel consumed in megajoule
Hour Amount of food consumed in megajoule
MATSIM volumes Amount of electricity consumed in megajoule
Relative Error Amount of gasoline consumed in megajoule
Normalized Relative Error Time at which the beforeMobsim event listeners started
GEH GEH

8.20 File: /ITERS/it.0/0.events.csv

Classname: EventOutput

field description
person Person(Agent) Id
vehicle vehicle id
time Start time of the vehicle
type Type of the event
fuel Type of fuel used in the vehicle
duration Duration of the travel
cost Cost of travel
location.x X co-ordinate of the location
location.y Y co-ordinate of the location
parking_type Parking type chosen by the vehicle
pricing_model Pricing model
charging_type Charging type of the vehicle
parking_taz Parking TAZ
distance Distance between source and destination
location Location of the vehicle
mode Mode of travel
currentTourMode Current tour mode
expectedMaximumUtility Expected maximum utility of the vehicle
availableAlternatives Available alternatives for travel for the passenger
personalVehicleAvailable Whether the passenger possesses a personal vehicle
tourIndex Tour index
facility Facility availed by the passenger
departTime Time of departure of the vehicle
originX X ordinate of the passenger origin point
originY Y ordinate of the passenger origin point
destinationX X ordinate of the passenger destination point
destinationY Y ordinate of the passenger destination point
fuelType Fuel type of the vehicle
num_passengers Num of passengers travelling in the vehicle
links Number of links in the network
departure_time Departure time of the vehicle
arrival_time Arrival time of the vehicle
vehicle_type Type of vehicle
capacity Total capacity of the vehicle

Continued on next page

60 Chapter 8. Model Outputs

beam Documentation, Release 0.7.0

Table 1 – continued from previous page
field description
start.x X ordinate of the start point
start.y Y ordinate of the start point
end.x X ordinate of the vehicle end point
end.y Y ordinate of the vehicle end point
end_leg_fuel_level Fuel level at the end of the travel
seating_capacity Seating capacity of the vehicle
costType Type of cost of travel incurred on the passenger

8.21 File: /ITERS/it.0/0.legHistogram.txt

Classname: LegHistogramOutput

field description
time Time
time Time
departures_all Total number of departures on all modes
arrivals_all Total number of arrivals on all modes
duration Duration of travel
stuck_all Total number of travels that got stuck on all modes
en-route_all Total number of travels by all modes
departures_car Total number of departures by car
arrivals_car Total number of departures by car
stuck_car Total number of travels that got stuck while travelling by car
en-route_car Total number of travels made by car
departures_drive_transit Total number of departures by drive to transit
arrivals_drive_transit Total number of arrivals by drive to transit
stuck_drive_transit Total number of travels that got stuck while travelling by drive to transit
en-route_drive_transit Total number of travels made by drive to transit
departures_ride_hail Total number of departures by ride hail
arrivals_ride_hail Total number of arrivals by ride hail
stuck_ride_hail Total number of travels that got stuck while travelling by ride hail
en-route_ride_hail Total number of travels made by ride hail
departures_walk Total number of departures on foot
arrivals_walk Total number of arrivals on foot
stuck_walk Total number of travels that got stuck while travelling on foot
en-route_walk Total number of travels made on foot
departures_walk_transit Total number of departures by walk to transit
arrivals_walk_transit Total number of arrivals by walk to transit
stuck_walk_transit Total number of travels that got stuck while travelling by walk to transit
en-route_walk_transit Total number of travels made by walk to transit

8.22 File: /ITERS/it.0/0.rideHailTripDistance.csv

Classname: RideHailTripDistanceOutput

8.21. File: /ITERS/it.0/0.legHistogram.txt 61

beam Documentation, Release 0.7.0

field description
hour Hour of the day
numPassengers Number of passengers travelling in the ride hail
vkt Total number of kilometers travelled by the ride hail vehicle

8.23 File: /ITERS/it.0/0.tripDuration.txt

Classname: TripDurationOutput

field description
pattern Pattern
(5*i)+ Value

8.24 File: /ITERS/it.0/0.biasErrorGraphData.txt

Classname: BiasErrorGraphDataOutput

field description
hour Hour of the day
mean relative error Mean relative error
mean bias Mean bias value

8.25 File: /ITERS/it.0/0.biasNormalizedErrorGraphData.txt

Classname: BiasNormalizedErrorGraphDataOutput

field description
hour Hour of the day
mean normalized relative error Mean normalized relative error
mean bias Mean bias value

62 Chapter 8. Model Outputs

CHAPTER 9

Protocols

Because BEAM is implemented using the Actor framework and simulations are executed asynchronously, there are
many communications protocols between Actors and Agents that must be specified and followed. The following
describes the key protocols with diagrams and narrative.

9.1 Trip Planning

9.1.1 RoutingRequests

One of the more familiar protocols, any Actor can consult the router service for routing information by sending a
RoutingRequest and receiving a RoutingResponse.

The RoutingRequest message contains:

• Departure Window

• Origin / Destination

• Transit Modes to Consider

63

beam Documentation, Release 0.7.0

• Vehicles to Consider (their Id, Location, Mode)

• The Id of the Person for whom the request is ultimately made

The RoutingResponse message contains:

• A vector of EmbodiedBeamTrips

EmbodiedBeamTrips contain:

• A trip classifer (i.e. the overall mode for the trip which is restricted to WALK, BIKE, CAR, RIDE_HAIL,
TRANSIT)

• A vector of EmbodiedBeamLegs

EmbodiedBeamLegs contain:

• A BeamLeg

• A BeamVehicle Id

• As Driver Boolean

• Optional PassengerSchedule

• Cost

• UnbecomeDriveOnCompletion Boolean

BeamLegs contain:

• Start time

• Mode (this is a more specific mode for Transit, e.g. SUBWAY or BUS)

• Duration

• BeamPath containing the path used through the network.

BeamPaths contain:

• Vector of link Ids

• Optional transit stop info (for any Transit leg, the boarding and alighting stop)

• A trajectory resolver which is resposible for translating the linkIds into coordinates

BeamTransitSegments contain:

• Origin stop

• Destination stop

9.1.2 ChoosesMode

The mode choice protocol involves gathering information, making a choice, confirming reservations if necessary, and
then adapting if the chosen trip cannot be executed.

64 Chapter 9. Protocols

beam Documentation, Release 0.7.0

Gathering Information

1. The Person receives the BeginModeChoiceTrigger from the scheduler.

2. Person sends a MobilityStatusInquiry to thier Household.

3. Household returns a MobilityStatusResponse. Based on this response, the person optionally includes vehicles
in the ReservationRequest sent to the Router.

4. Person sends a ReservationRequest to the Router.

5. Person sends a RideHailInquiry to the RideHailManager.

6. Person schedules a FinalizeModeChoiceTrigger to occur in the future (respresenting non-zero time to make a
choice).

7. Person stays in ChoosingMode state until all results are recieved: RoutingResponse, RideHailingInquiryRe-
sponse, FinalizeModeChoiceTrigger. With each response, the data is stored locally for use in the mode choice.

Choosing and Reserving

1. The Person evaluates the ModeChoiceCalculator which returns a chosen itinerary (in the form of an Emboided-
BeamTrip) from the list of possible alternatives.

9.1. Trip Planning 65

beam Documentation, Release 0.7.0

2. If a reservation is required to accomplish the chosen itinerary, the person sends ReservationRequest to all drivers
in the itinerary (in the case of a transit trip) or a ReserveRide message to the RideHailManager in the case of a
ride hail trip).

3. If reservation requests were sent, the Person waits (still in ChoosingMode state) for all responses to be returned.
If any response is negative, the Person removes the chosen itinerary from their choice set, sends RemovePassen-
gerFromTrip messagse to all drivers in the trip (if transit) and begins the mode choice process anew.

4. If all reservation responses are received and positive or if the trip does not require reservations at all, the person
releases any reserved personal vehicles by sending ReleaseVehicleReservation messags to the Household and a
ResourceIsAvailableNotification to themself, the Person throws a PersonDepartureEvent and finally schedules a
PersonDepartureTrigger to occur at the departure time of the trip.

9.2 Traveling

When a PersonAgent travels, she may transition from being a driver of a vehicle to being a passenger of a vehicle.
The protocol for being a driver of a vehicle is listed separately below because that logic is implemented in its own trait
(DrivesVehicle) to allow BeamAgents other than PersonAgents to drive vehicles. Some agents (e.g. TransitDrivers)
may not be Persons and therefore do not “travel” but they do of course operate a vehicle and move around with it.

9.2.1 Driver

66 Chapter 9. Protocols

beam Documentation, Release 0.7.0

Starting Leg

1. The Driver receives a StartLegTrigger from the Waiting state.

2. The Driver schedules NotifyLegStartTriggers for each rider in the PassengerSchedule associated with the current
BeamLeg.

3. The Driver creates a list of borders from the PassengerSchedule associated with the BeamLeg to track which
agents have yet to board the vehicle.

4. When all expected BoardVehicle messages are recieved by the Driver, the Driver schedules an EndLegTrigger
and transitions to the Moving state.

Ending Leg

1. The Driver receives an EndLegTrigger from the Moving state.

2. The Driver schedules NotifyLegEndTriggers for all riders in the PassengerSchedule associated with the current
BeamLeg.

3. The Driver creates a list of alighters from the PassengerSchedule associated with the BeamLeg to track which
agents have yet to alight the vehicle.

4. When all expected AlightingConfirmation messages are recieved from the vehicle, the Driver publishes a Path-
TraversalEvent and proceeds with the following steps.

5. If the Driver has more legs in the PassengerSchedule, she schedules a StartLegTrigger based on the start time of
that BeamLeg.

6. Else the Driver schedules a PassengerScheduleEmptyTrigger to execute in the current tick.

7. The Driver transitions to the Waiting state.

9.2. Traveling 67

beam Documentation, Release 0.7.0

9.2.2 Traveler

68 Chapter 9. Protocols

beam Documentation, Release 0.7.0

9.2. Traveling 69

beam Documentation, Release 0.7.0

Starting Trip

1. The PersonAgent receives a PersonDepartureTrigger from the scheduler while in Waiting state. She executes
the ProcessNextLeg Method described below.

ProcessNextLeg Method

The following protocol is used more than once by the traveler so it is defined here as a function with no arguments.

1. The Person checks the value of _currentEmbodiedLeg to see if unbecomeDriverOnCompletion is set to TRUE,
if so, then the Person sends an UnbecomeDriver message to her vehicle and updates her _currentVehicle accord-
ingly.

2. If there are no more legs in the EbmodiedBeamTrip, the PersonAgent either schedules the ActivityEndTrigger
and transitions to the PerformingActivity state or, if there are no remaining activities in the person’s plan, she
transitions to the Finished state and schedules no further triggers.

3. If there are more legs in the EmbodiedBeamTrip, the PersonAgent processes the next leg in the trip. If asDriver
for the next leg is FALSE, then the Person transitions to Waiting state and does nothing further.

4. If asDriver is true for the next leg, the Person creates a temporary passenger schedule for the next leg and sends
it along with a BecomeDriver or a ModifyPassnegerSchedule message, depending on whether this person is
already the driver of the vehicle or if becoming the driver for the first time.

5. The person stays in the current state (which could be Waiting or Moving depending on the circumstances).

Driving Mission Completed

1. The PersonAgent receives a PassengerScheduleEmptyTrigger from the scheduler which indicates that as a
driver, this Person has finished all legs in her PassengerSchedule.

2. The PersonAgent executes the ProcessNextLeg method.

Notify Start Leg

1. The PersonAgent receives a NotifyLegStartTrigger.

2. If the private field _currentEmbodiedLeg is non-empty or if the leg referred to in the trigger does not match
the Person’s next leg or if the Person’s next leg has asDriver set to TRUE, this Person has received the Noti-
fyLegStartTrigger too early, so she reschedules the NotifyLegStartTrigger to occur in the current tick, allowing
other messages in her Actor mailbox to be processed first.

3. Otherwise, the PersonAgent sends an BoardVehicle message to the driver contained in the EmbodiedBeamLeg
unless she is already a passenger in that vehicle.

4. The PersonAgent transitions to the Moving state.

Notify End Leg

1. The PersonAgent receives a NotifyLegEndTrigger.

2. If the private field _currentEmbodiedLeg is empty or the currentBeamLeg does not match the leg associated
with the Trigger, this Person has received the NotifyLegEndTrigger too early, so she reschedules the NotifyLe-
gEndTrigger to occur in the current tick, allowing other messages in her Actor mailbox to be processed first.

3. If another EmbodiedBeamLeg exists in her EmbodiedBeamTrip AND the BeamVehicle associated with the next
EmbodiedBeamTrip is identical to the curren BeamVehicle, then she does nothing other than update her internal
state to note the end of the leg and transition to Waiting.

4. Else she sends the current driver an AlightVehicle message and executes the ProcessNextLegModule method.

70 Chapter 9. Protocols

beam Documentation, Release 0.7.0

9.3 Household

During initialization, we execute the rank and escort heuristc. Escorts and household vehicles are assigned to members.

1. The PersonAgent retrieves mobility status from her Household using a MobilityStatusInquiry message.

2. Household returns a MobilityStatusReponse message which notifies the person about two topics: a) whether she
is an escortee (e.g. a child), an estorter (e.g. a parent), or traveling alone; b) the Id and location of at most one
Car and at most one Bike that the person may use for their tour.

3. If the PersonAgent is an escortee, then she will enter a waiting state until she receives a AssignTrip message
from her escorter which contains the BeamTrip that she will follow, at which point she schedules a PersonDe-
partureTrigger.

4. Else the PersonAgent goes through the mode choice process. After choosing a BeamTrip, she sends an appro-
priate BeamTrip to her escortees using the AssignTrip message.

5. The PersonAgent sends a VehicleConfirmationNotice to the Household, confirming whether or not she is using
the Car or Bike. The Household will use this information to offer unused vehicles as options to subsequent
household members.

9.3.1 Escort

9.4 RideHailing

The process of hailing a ride from a TNC is modeled after the real-world experience:

9.3. Household 71

beam Documentation, Release 0.7.0

1. The PersonAgent inquires about the availability and pricing of the service using a RideHailingInquiry message.

2. The RideHailingManager responds with a RideHailingInquiryResponse.

3. The PersonAgent may choose to use the ride hailing service in the mode choice process.

4. The PersonAgent sends a ReserveRide message attempting to book the service.

5. The RideHailingManager responds with a ReservationResponse which either confirms the reservation or notifies
that the resource is unavailable.

9.4.1 Inquiry

The RideHailingInquiry message contains:

• inquiryId

• customerId

• pickUpLocation

• departAt time

• destinationLocation

The RideHailingInquiryResponse message contains:

• inquiryId

• a Vector of TravelProposals

72 Chapter 9. Protocols

beam Documentation, Release 0.7.0

• an optional ReservationError

Each TravelProposal contains:

• RideHailingAgentLocation

• Time to Customer

• estimatedPrice

• estimatedTravelTime

• Route to customer

• Route from origin to destination

9.4.2 Reserve

The ReserveRide message contains:

• inquiryId

• customerId in the form of a VehiclePersonId

• pickUpLocation

• departAt time

• destinationLocation)

The ReservationResponse message contains the request Id and either a ReservationError or f the reservation is suc-
cessfull, a ReserveConfirmInfo object with the following:

• DepartFrom BeamLeg.

• ArriveTo BeamLeg.

• PassengerVehicleId object containin the passenger and vehicle Ids.

• Vector of triggers to schedule.

9.5 Transit

Transit itineraries are returned by the router in the Trip Planning Protocol. In order to follow one of these itineraries,
the PersonAgent must reserve a spot on the transit vehicle according to the following protocol:

1. PersonAgent sends ReservationRequest to the Driver.

9.5. Transit 73

beam Documentation, Release 0.7.0

2. The BeamVehicle forwards the reservation request to the Driver of the vehicle. The driver is responsible for
managing the schedule and accepting/rejecting reservations from customers.

3. The Driver sends a ReservationConfirmation directly to the PersonAgent.

4. When the BeamVehicle makes it to the confirmed stop for boarding, the Driver sends a BoardingNotice to the
PersonAgent.

5. The PersonAgent sends an BoardVehicle message to the Driver. 7. Also, concurrently, when the BeamVehicle is at
the stop, the Driver sends an AlightingNotice to all passengers registered to alight at that stop. 8. Notified passengers
send an AlightVehicle message to the Driver.

Because the reservation process ensures that vehicles will not exceed capacity, the Driver need not send an acknowl-
edgement to the PersonAgent.

9.6 Refueling

???

9.7 Modify Passenger Schedule Manager

This protocol is deep into the weeds of the Ride Hail Manager but important for understanding how reservations and
reposition requests are managed.

74 Chapter 9. Protocols

CHAPTER 10

DevOps Guide

10.1 Git LFS

10.1.1 Setup git-lfs Server

1. From the AWS Management Console, launch the Amazon EC2 instance from an Amazon Machine Image (AMI)
that has Ubuntu 64-bit as base operating system.

2. Choose a security group that will allow SSH access as well as port 8080 to access your git lfs server. You should
only enable ingress from the IP addresses you wish to allow access to your server.

3. On AWS Management Console go to Services menu from top bar and open the Amazon S3 console.

4. Click Create Bucket, it will opens a new dialog window.

6. On the Name and region tab, provide appropriate name (should be DNS compliant) and desired region, then
Click Next button in the bottom.

7. Leave Set properties as is and click Next again.

8. On Set Permissions tab, set read and write access for your git-lfs user. and Click next.

9. Verify your settings on Review tab. If you want to change something, choose Edit. If your current settings are
correct, choose Create bucket.

10. Connect to the ec2 instance via SSH.

11. Add NodeSource APT repository for Debian-based distributions repository AND the PGP key for verifying
packages:

$ curl -sL https://deb.nodesource.com/setup_6.x | sudo -E bash -

12. Install Node.js from the Debian-based distributions repository:

$ sudo apt-get install -y nodejs

13. To confirm that Node.js was successfully installed on your system, you can run the following command:

$ node -v

75

https://deb.nodesource.com/setup_6.x

beam Documentation, Release 0.7.0

If Node is installed, this command should print out something like this:

v6.9.1

14. To get the most up-to-date npm, you can run the command:

$ sudo npm install npm –global

15. Next, you can directly install git-lfs server using node package manager by executing following command:

$ sudo npm install node-git-lfs

16. Git LFS server offers two method of configuration, via environment variable or configuration file. At this step
you have to define some environment variables to configure the server:

• LFS_BASE_URL - URL of the LFS server - required

• LFS_PORT - HTTP portal of the LFS server, default to 3000 - required

• LFS_STORE_TYPE - Object store type, can be either s3 (for AWS S3) or grid (for MongoDB GridFS), default
to s3 - required

• LFS_AUTHENTICATOR_TYPE - Authenticator type, can be basic (for basic username and password), none
(for no authentication), default to none - required

• LFS_AUTHENTICATOR_USERNAME - Username - required

• LFS_AUTHENTICATOR_PASSWORD - Password - required

• AWS_ACCESS_KEY - AWS access key - required

• AWS_SECRET_KEY - AWS secret key - required

• LFS_STORE_S3_BUCKET - AWS S3 bucket - required

• LFS_STORE_S3_ENDPOINT - AWS S3 endpoint, normally this will be set by region

• LFS_STORE_S3_REGION - AWS S3 region

Set Aws access key, secret ky and s3 details based on previous steps.

17. Now start git lfs server:

$ node-git-lfs

18. At the end, create file named .lfsconfig in you repository with following contents, update host and port based on
your environment.

[lfs] url = “http://host:port/LBNL-UCB-STI/beam.git” batch = true access = basic

This will setup everything you need to setup and install a custom gitl-lfs server on Amazon instance and github
repository will start pointing to the your custom server. There is no special installation or requirement for the clint,
only thing that you need is to provide lfs user name and password on you client when you pull your contents for the
first time.

10.2 Jenkins

10.2.1 Setup Jenkins Server

1. From the AWS Management Console, launch the Amazon EC2 instance from an Amazon Machine Image (AMI)
that has Ubuntu 64-bit as base operating system.

2. Choose a security group that will allow SSH access as well as port 8080, 80 and 443 to access your Jenkins
dashboard. You should only enable ingress from the IP addresses you wish to allow access to your server.

76 Chapter 10. DevOps Guide

http://host:port/LBNL-UCB-STI/beam.git

beam Documentation, Release 0.7.0

3. Connect to the instance via SSH.

4. Add oracle java apt repository:

$ sudo add-apt-repository ppa:webupd8team/java

5. Run commands to update system package index and install Java installer script:

$ sudo apt update; sudo apt install oracle-java8-installer

6. Add the repository key to the system:

$ wget -q -O - https://pkg.jenkins.io/debian/jenkins-ci.org.key | sudo apt-key
→˓add - .

7. Append the Debian package repository address to the server’s sources:

$ echo deb https://pkg.jenkins.io/debian-stable binary/ | sudo tee /etc/apt/
→˓sources.list.d/jenkins.list

8. Run update so that apt-get will use the new repository:

$ sudo apt-get update

9. Install Jenkins and its dependencies, including Java:

$ sudo apt-get install jenkins

10. Start Jenkins:

$ sudo service jenkins start

11. Verify that it started successfully:

$ sudo service jenkins status

12. If everything went well, the beginning of the output should show that the service is active and configured to start
at boot:

jenkins.service - LSB: Start Jenkins at boot time Loaded: loaded (/etc/init.d/jenkins; bad; vendor preset:
enabled) Active:active (exited) since Thu 2017-04-20 16:51:13 UTC; 2min 7s ago Docs: man:systemd-
sysv-generator(8)

13. To set up installation, visit Jenkins on its default port, 8080, using the server domain name or IP address:

http://ip_address_of_ec2_instance:8080

An “Unlock Jenkins” screen would appear, which displays the location of the initial password

10.2. Jenkins 77

http://ip_address_of_ec2_instance:8080

beam Documentation, Release 0.7.0

14. In the terminal window, use the cat command to display the password:

$ sudo cat /var/lib/jenkins/secrets/initialAdminPassword

15. Copy the 32-character alphanumeric password from the terminal and paste it into the “Administrator password”
field, then click “Continue”.

16. Click the “Install suggested plugins” option, which will immediately begin the installation process.

78 Chapter 10. DevOps Guide

beam Documentation, Release 0.7.0

17. When the installation is complete, it prompt to set up the first administrative user. It’s possible to skip this step
and continue as admin using the initial password used above, but its batter to take a moment to create the user.

18. Once the first admin user is in place, you should see a “Jenkins is ready!” confirmation screen.

10.2. Jenkins 79

beam Documentation, Release 0.7.0

19. Click “Start using Jenkins” to visit the main Jenkins dashboard.

At this point, Jenkins has been successfully installed.

20. Update your package lists and install Nginx:

$ sudo apt-get install nginx

21. To check successful installation run:

$ nginx -v

80 Chapter 10. DevOps Guide

beam Documentation, Release 0.7.0

22. Move into the proper directory where you want to put your certificates:

$ cd /etc/nginx

23. Generate a certificate:

$ sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout /etc/nginx/
→˓cert.key -out /etc/nginx/cert.crt

24. Next you will need to edit the default Nginx configuration file:

$ sudo vi /etc/nginx/sites-enabled/default

25. Update the file with following contents:

server { listen 80; return 301 https://\protect\T1\textdollarhost\protect\T1\textdollarrequest_uri;

}

server { listen 443; server_name beam-ci.tk;

ssl_certificate /etc/nginx/cert.crt; ssl_certificate_key /etc/nginx/cert.key;

ssl on; ssl_session_cache builtin:1000 shared:SSL:10m; ssl_protocols TLSv1 TLSv1.1
TLSv1.2; ssl_ciphers HIGH:!aNULL:!eNULL:!EXPORT:!CAMELLIA:!DES:!MD5:!PSK:!RC4;
ssl_prefer_server_ciphers on;

access_log /var/log/nginx/jenkins.access.log;

location / { proxy_set_header Host $host; proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_set_header X-
Forwarded-Proto $scheme;

Fix the “It appears that your reverse proxy set up is broken” error. proxy_pass http://localhost:
8080; proxy_read_timeout 90;

proxy_redirect http://localhost:8080 https://beam-ci.tk;

}

}

26. For Jenkins to work with Nginx, you need to update the Jenkins config to listen only on the localhost interface
instead of all (0.0.0.0), to ensure traffic gets handled properly. This is an important step because if Jenkins is
still listening on all interfaces, then it will still potentially be accessible via its original port (8080).

27. Modify the /etc/default/jenkins configuration file to make these adjustments:

$ sudo vi /etc/default/jenkins

28. Locate the JENKINS_ARGS line and update it to look like the following:

$ JENKINS_ARGS="--webroot=/var/cache/$NAME/war --httpListenAddress=127.0.0.1 --
→˓httpPort=$HTTP_PORT -ajp13Port=$AJP_PORT"

29. Then go ahead and restart Jenkins:

$ sudo service jenkins restart

30. After that restart Nginx:

10.2. Jenkins 81

https://\protect \T1\textdollar host\protect \T1\textdollar request_uri
http://localhost:8080
http://localhost:8080
http://localhost:8080
https://beam-ci.tk

beam Documentation, Release 0.7.0

$ sudo service nginx restart

You should now be able to visit your domain using either HTTP or HTTPS, and the Jenkins site will be served securely.
You will see a certificate warning because you used a self-signed certificate.

31. Next you install certbot to setup nginx with as CA certificate. Certbot team maintains a PPA. Once you add it to
your list of repositories all you’ll need to do is apt-get the following packages:

$ sudo add-apt-repository ppa:certbot/certbot

32. Run apt update:

$ sudo apt-get update

33. Install certbot for Nginx:

$ sudo apt-get install python-certbot-nginx

34. Get a certificate and have Certbot edit Nginx configuration automatically, run the following command:

$ sudo certbot -nginx

35. The Certbot packages on your system come with a cron job that will renew your certificates automatically
before they expire. Since Let’s Encrypt certificates last for 90 days, it’s highly advisable to take advantage of
this feature. You can test automatic renewal for your certificates by running this command:

$ sudo certbot renew -dry-run

36. Restart Nginx:

$ sudo service nginx restart

37. Go to AWS management console and update the Security Group associated with jenkins server by removing the
port 8080, that you added in step 2.

10.2.2 Setup Jenkins Slave

Now configure a Jenkins slave for pipeline configuration. You need the slave AMI to spawn automatic EC2 instance
on new build jobs.

1. Create Amazon EC2 instance from an Amazon Machine Image (AMI) that has Ubuntu 64-bit as base operating
system.

2. Choose a security group that will allow only SSH access to your master (and temporarily for your personal
system).

3. Connect to the instance via SSH.

4. Add oracle java apt repository and git-lfs:

$ sudo add-apt-repository ppa:webupd8team/java*
$ sudo curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.
→˓deb.sh | sudo bash*

5. Run commands to update system package index:

82 Chapter 10. DevOps Guide

beam Documentation, Release 0.7.0

$ sudo apt update

6. Install Java and other dependency components, there is no need to install any jenkins component or service.
Jenkins automatically deploy an agent as it initiates the build:

$ sudo apt install git docker oracle-java8-installer git-lfs=2.3.4

7. SSH master that you created in last topic and from inside master again ssh your newly created slave, just to test
the communication:

$ ssh ubuntu@<slave_ip_address>

8. In EC2 Instances pane, click on your Jenkins slave instance you just configure, and create a new image.

9. On Create Image dialog, name the image and select “Delete on Termination”. It makes slave instance disposable,
if there are any build artifacts, job should save them, that will send them to your master.

10. Once image creation process completes, just copy the AMI ID, you need it for master configuration.

10.2. Jenkins 83

beam Documentation, Release 0.7.0

11. Update the Slave security group and remove all other IP addresses except master. You should only enable ingress
from the IP addresses you wish to allow access to your slave.

12. At the end drop slave instance, its not needed anymore.

10.2.3 Configure Jenkins Master

Now start configuring Jenkins master, so it can spawn new slave instance on demand.

1. Once Master and Slave are setup, login to Jenkins server administrative console as admin.

2. On the left-hand side, click Manage Jenkins, and then click Manage Plugins.

3. Click on the Available tab, and then enter Amazon EC2 plugin at the top right.

3. Select the checkbox next to Amazon EC2 plugin, and then click Install without restart.

4. Once the installation is done, click Go back to the top page. 4. On the sidebar, click on Credentials, hover (global)
for finding the sub menu and add a credential.

84 Chapter 10. DevOps Guide

beam Documentation, Release 0.7.0

6. Choose AWS Credentials, and limit the scope to System, complete the form, if you make an error, Jenkins will
add an error below the secret key. Jenkins uses access key ID and secret access key to interface with Amazon
EC2.

7. Click on Manage Jenkins, and then Configure System.

8. Scroll all the way down to the section that says Cloud.

9. Click Add a new cloud, and select Amazon EC2. A collection of new fields appears.

10. Select Amazon EC2 Credentials that you just created. EC2 Key Pair’s Private key is a key generated when
creating a new EC2 image on AWS.

10.2. Jenkins 85

beam Documentation, Release 0.7.0

11. Complete the form, choose a Region, Instance Type, label and set Idle termination time. If the slave becomes
idle during this time, the instance will be terminated.

12. In order for Jenkins to watch GitHub projects, you will need to create a Personal Access Token in your GitHub
account.

Now go to GitHub and signing into your account and click on user icon in the upper-right hand corner and select
Settings from the drop down menu.

86 Chapter 10. DevOps Guide

beam Documentation, Release 0.7.0

13. On Settings page, locate the Developer settings section on the left-hand menu and go to Personal access tokens
and click on Generate new token button.

14. In the Token description box, add a description that will allow you to recognize it later.

15. In the Select scopes section, check the repo:status, repo:public_repo and admin:org_hook boxes. These will
allow Jenkins to update commit statuses and to create webhooks for the project. If you are using a private
repository, you will need to select the general repo permission instead of the repo sub items.

10.2. Jenkins 87

beam Documentation, Release 0.7.0

16. When you are finished, click Generate token at the bottom.

17. You will be redirected back to the Personal access tokens index page and your new token will displayed.

18. Copy the token now so that you can reference it later.

Now that you have a token, you need to add it to your Jenkins server so it can automatically set up webhooks. Log
into your Jenkins web interface using the administrative account you configured during installation.

19. On Jenkins main dashboard, click Credentials in the left hand menu.

88 Chapter 10. DevOps Guide

beam Documentation, Release 0.7.0

20. Click the arrow next to (global) within the Jenkins scope. In the box that appears, click Add credentials.

21. From Kind drop down menu, select Secret text. In the Secret field, paste your GitHub personal access token.
Fill out the Description field so that you will be able to identify this entry at a later date and press OK button in
the bottom.

10.2. Jenkins 89

beam Documentation, Release 0.7.0

22. Jenkins dashboard, click Manage Jenkins in the left hand menu and then click Configure System.

23. Find the section with title GitHub. Click the Add GitHub Server button and then select GitHub Server.

24. In the Credentials drop down menu, select your GitHub personal access token that you added in the last section.

90 Chapter 10. DevOps Guide

beam Documentation, Release 0.7.0

25. Click the Test connection button. Jenkins will make a test API call to your account and verify connectivity. On
successful connectivity click Save.

10.2.4 Configure Jenkins Jobs

Once Jenkins is installed on master and its configured with slave, cloud and github. The only thing we need now,
before configuring the jobs, is to install a set of plugins.

1. On the left-hand side of Jenkins dashboard, click Manage Jenkins, and then click Manage Plugins.

2. Click on the Available tab, and then enter plugin name at the top right to install following set of plugins.

• Gradle Plugin: This plugin allows Jenkins to invoke Gradle build scripts directly.

• Build Timeout: This plugin allows builds to be automatically terminated after the specified amount of time
has elapsed.

• HTML5 Notifier Plugin: The HTML5 Notifier Plugin provides W3C Web Notifications support for builds.

• Notification Plugin: you can notify on deploying, on master failure/back to normal, etc.

• HTTP Request Plugin: This plugin sends a http request to a url with some parameters.

• embeddable-build-status: Fancy but I love to have a status badge on my README

• Timestamper: It adds time information in our build output.

• AnsiColor: Because some tools (lint, test) output string with bash color and Jenkins do not render the color
without it.

• Green Balls: Because green is better than blue!

3. Back in the main Jenkins dashboard, click New Item in the left hand menu:

4. Enter a name for your new pipeline in the Enter an item name field. Afterwards, select Freestyle Project as the
item type and Click the OK button at the bottom to move on.

5. On the next screen, specify Project name and description.

10.2. Jenkins 91

beam Documentation, Release 0.7.0

6. Then check the GitHub project box. In the Project url field that appears, enter your project’s GitHub repository
URL.

7. In the HTML5 Notification Configuration section left uncheck Skip HTML5 Notifications? Checkbox, to re-
ceive browser notifications against our builds

8. To configure Glip Notifications with Jenkins build you need to configure notification endpoint under Job Notifi-
cation section. Select JSON in Format drop-down, HTML in Protocol and to obtain end point URL follow steps
8.1 through 8.3.

92 Chapter 10. DevOps Guide

beam Documentation, Release 0.7.0

8.1. Open Glip and go to your desired channel where you want to receive notifications and then click top
right button for Conversation Settings. It will open a menu, click Add Integration menu item.

10.2. Jenkins 93

beam Documentation, Release 0.7.0

8.2. On Add Integration dialog search Jenkins and click on the Jenkins Integration option.

8.3. A new window would appear with integration steps, copy the URL from this window and use in the
above step.

9. At the end of notification section check Execute concurrent build if necessary and Restrict where this project
can run and specify the label that we mentioned in last section while configuring master.

94 Chapter 10. DevOps Guide

beam Documentation, Release 0.7.0

10. In Source Code Management specify the beam github url against Repository URL and select appropriate cre-
dentials. Put ** for all branches, to activate build for all available bit hub branches.

11. Next, in the Build Triggers section, check the GitHub hook trigger for GITScm polling box.

12. Under Build Environment section, click Abort build if it’s stuck and specify the timeout. Enable timestamps to
Console output and select xterm in ANSI color option and in the end specify the build name pattern for more
readable build names.

10.2. Jenkins 95

beam Documentation, Release 0.7.0

13. Last but not least, in Build section add a gradle build step, check Use Gradle Wrapper and specify the gralde
task for build.

10.2.5 Configure Periodic Jobs

You can schedule any Jenkins job to run periodically based on provided schedule. To configure periodic build follow
the steps below:

1. First click on Configure menu item from menu on left hand side of Job/Project home page.

96 Chapter 10. DevOps Guide

beam Documentation, Release 0.7.0

2. On the next (configuration) page, go to Build Triggers section.

3. Click on check box labeled Build periodically to enable the option. It will expand and ask for Schedule with a
warning message some thing like, No schedules so will never run.

4. You have to specify a schedule by following the similar syntax of cron job as a line consists of 5 fields separated
by TAB or whitespace:

MINUTE HOUR DOM MONTH DOW

• MINUTE Minutes within the hour (0–59)

• HOUR The hour of the day (0–23)

• DOM The day of the month (1–31)

• MONTH The month (1–12)

• DOW The day of the week (0–7) where 0 and 7 are Sunday.

To schedule once daily every 24 hours for only 5 working days, we need to specify some thing like:

H 0 * * 1-5

10.2. Jenkins 97

beam Documentation, Release 0.7.0

As you specify the schedule, warning would be replaced with a descriptive schedule.

5. Save the configurations and now you have setup job to run periodically.

10.2.6 References

https://d0.awsstatic.com/whitepapers/DevOps/Jenkins_on_AWS.pdf

https://www.digitalocean.com/community/tutorials/how-to-configure-nginx-with-ssl-as-a-reverse-proxy-for-jenkins

https://www.digitalocean.com/community/tutorials/how-to-set-up-continuous-integration-pipelines-in-jenkins-on-ubuntu-16-04

https://jmaitrehenry.ca/2016/08/04/how-to-install-a-jenkins-master-that-spawn-slaves-on-demand-with-aws-ec2

10.3 Automated Cloud Deployment

10.3.1 Automatic Image (AMI) Update

In Automated Cloud Deployment capability, there is a baseline image (AMI) that used to instantiate new EC2 instance.
It contains copy of git repository and gradle dependency libraries. All of these are outdated in few days due to active
development of BEAM. And when we start instance from an outdated image it take additional time to update them
before starting the simulation/run. This process help Cloud Automatic Deployment to keep up to date image for fast
execution. To trigger this update process a Cloud Watch Event is setup with one week frequency. This event triggers
an AWS Lambda (named updateDependencies) and lambda then starts an instance from the outdated image with
instructions to update the image with latest LFS files for pre configured branches (these branches are mentioned in
its environment variables that we can configure easily without any change in lambda code). One LFS files and gradle
dependencies are updated in the new instance, the instance invoke a new lambda (named updateBeamAMI) to take its
new image. This new lambda creates an image of the instance, terminate the instance and update this new image id to
Automated Cloud Deployment process for future use.

This process is designed to get latest LFS files from different branches. To add a new branch or update existing one,
an environment variable named BRANCHES need to update with space as branch name delimiter.

98 Chapter 10. DevOps Guide

https://d0.awsstatic.com/whitepapers/DevOps/Jenkins_on_AWS.pdf
https://www.digitalocean.com/community/tutorials/how-to-configure-nginx-with-ssl-as-a-reverse-proxy-for-jenkins
https://www.digitalocean.com/community/tutorials/how-to-set-up-continuous-integration-pipelines-in-jenkins-on-ubuntu-16-04
https://jmaitrehenry.ca/2016/08/04/how-to-install-a-jenkins-master-that-spawn-slaves-on-demand-with-aws-ec2

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

99

	About BEAM
	Overview
	MATSim Integration
	BeamMobSim
	AgentSim
	PhysSim
	R5 Router
	MATSim Events

	Resource Markets
	Dynamic Within-Day Planning
	Rich Modal Choice
	Plug-in Electric Vehicle Modeling with BEAM
	Contact Information
	Reports and Papers
	References

	User’s Guide
	Getting Started
	System Requirements
	Prerequisites :
	GIT-LFS Configuration
	Installing BEAM
	Running BEAM
	Running BEAM with Intellij IDE
	Scenarios
	Inputs
	Outputs
	Model Config

	Experiment Manager
	Calibration
	Optimization-based Calibration Principles
	SigOpt Setup
	Configuration
	Execution
	Manage Experiment

	Timezones and GTFS
	Converting a MATSim Scenario to Run with BEAM
	Conversion Instructions

	Developer’s Guide
	Repositories
	Configuration
	Environment Variables
	GIT-LFS timeout - how to proceed
	Keeping Production Data out of Master Branch
	Automated Cloud Deployment
	AWS EC2 Start
	AWS EC2 Stop

	Performance Monitoring
	Beam Metrics Utility (MetricsSupport)
	Beam Metrics Configuration
	Setup Docker as Metric Backend

	Tagging Tests for Periodic CI
	Instructions for forking BEAM
	Scala tips
	Scala Collection
	Use lazy logging

	BeamAgents
	Person Agents
	Ride Hail Agents
	Transit Driver Agents

	Behaviors
	Mode Choice
	Multinomial Logit Mode Choice
	Latent Class Mode Choice

	Parking
	Refueling

	Event Specifications
	MATSim Events
	ActivityStartEvent
	ActivityEndEvent
	PersonDepartureEvent
	PersonArrivalEvent
	PersonEntersVehicleEvent
	PersonLeavesVehicleEvent

	BEAM Events
	ModeChoiceEvent
	PathTraversalEvent

	Model Inputs
	Configuration file
	Config Options

	Model Outputs
	File: /modeChoice.csv
	File: /referenceModeChoice.csv
	File: /realizedMode.csv
	File: /rideHailRevenue.csv
	File: /ITERS/it.0/0.averageTravelTimes.csv
	File: /ITERS/it.0/0.energyUse.png.csv
	File: /ITERS/it.0/0.physsimLinkAverageSpeedPercentage.csv
	File: /ITERS/it.0/0.physsimFreeFlowSpeedDistribution.csv
	File: /ITERS/it.0/0.rideHailWaitingStats.csv
	File: /ITERS/it.0/0.rideHailIndividualWaitingTimes.csv
	File: /ITERS/it.0/0.rideHailSurgePriceLevel.csv
	File: /ITERS/it.0/0.rideHailRevenue.csv
	File: /ITERS/it.0/0.tazRideHailSurgePriceLevel.csv
	File: /ITERS/it.0/0.rideHailWaitingSingleStats.csv
	File: /ITERS/it.0/0.rideHailInitialLocation.csv
	File: /stopwatch.txt
	File: /scorestats.txt
	File: /summaryStats.txt
	File: /ITERS/it.0/0.countsCompare.txt
	File: /ITERS/it.0/0.events.csv
	File: /ITERS/it.0/0.legHistogram.txt
	File: /ITERS/it.0/0.rideHailTripDistance.csv
	File: /ITERS/it.0/0.tripDuration.txt
	File: /ITERS/it.0/0.biasErrorGraphData.txt
	File: /ITERS/it.0/0.biasNormalizedErrorGraphData.txt

	Protocols
	Trip Planning
	RoutingRequests
	ChoosesMode

	Traveling
	Driver
	Traveler

	Household
	Escort

	RideHailing
	Inquiry
	Reserve

	Transit
	Refueling
	Modify Passenger Schedule Manager

	DevOps Guide
	Git LFS
	Setup git-lfs Server

	Jenkins
	Setup Jenkins Server
	Setup Jenkins Slave
	Configure Jenkins Master
	Configure Jenkins Jobs
	Configure Periodic Jobs
	References

	Automated Cloud Deployment
	Automatic Image (AMI) Update

	Indices and tables

